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» Veronesi P, (2010). Fixed Income Securities. Chapter 1.
 Bank of International Settlements. http://wuw.bis.org/.
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Why a course on Fixed Income?



Introduction

Why model interest rates?

 Find the time value of the money:

» how much would an individual be willing to pay today for a
promised value of one euro that is promised for a known future
date?

* Pricing of interest derivative instruments:

1. Bonds

Bond options

Bond futures

Interest rate swaps

Swaptions

6. Caps, Floors

O ECOID

» Risk Management in the Fixed Income arena
+ Consider that the bond market has a greater extension than the
stock market.



Basic Valuation Problems

* Valuation of payments that are promised for a future specified
date

» Example: valuation of a structured bond promising payments with
the amount and date of the payments determined by the

« face value

+ maturity date

« reference rate

 coupon formula: fixed, floating, with optionalities, etc.

* Hedging a position in the fixed income market.

» Example: how shifts in the market interest rates can affect the
value of your book? How can we devise an hedging strategy?

* Interest rate modelling: in order to price and hedge interest
rate derivatives we need to model the dynamics of the term
structure of interest rates.



Complexity of Fixed Income
Markets




Complexity of Fixed Income Markets
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Figure 1: Source: Bloomberg Screen BTMM, February 23,2017.




The Size of the Debt Market
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Figure 2: Veronesi (2010).



Global Debt Market Size
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Figure 3: BIS Quarterly Review, December 2011.



The Growth in Derivatives Markets
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Global OTC Derivatives

Global OTC derivatives*
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Conclusions




Conclusions

» We have given an idea about the complexity of the fixed income
world

» The aim of the course will be to discuss the most important
pricing models and hedging techniques and how they deal with
market data, conventions and products.
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@ VYield Curve Basics
© Market Quotation: LIBOR Rates
© LIBOR fallback
@ Zero-Coupon Bond
© Coupon Bond
@ Bond Payment Schedule
Coupon (Bearing) Bond: semi-annual coupons
@ Clean Price, Accrued Interest and Gross Price
@ Price Quotes: Clean Price, Accrued Interest and Gross Price
@ Pricing a Coupon Bond
@ Par Coupon Rate
@ Yield to Maturity
Conclusions
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ppendix

S Treasury Bills
Odd Rolls Dates
@ VYield to Maturity
@ VYield Spread
@ Bond Portfolio Yield

pounding conventions
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Term Structure of Discount Factors
o If we consider the zcb price as function of time to maturity

T— P(t,t+71),

we have the discount function.
@ The plot of P (t, t+ T) against T is called the term structure of
discount factors.
@ P(t, t+ T) used to be a monotonic decreasing function. It's no true apymore.
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Computing Present and Final value

Using zcb prices we can compute present values and final values.

Discounting: Present Value

Compute the present value in t of the notional N that will be received in T

t T
—P(t, T)XN  +N

Compounding: Final Value

Compute the value in T of the capital C that is invested in t

t T
-C C
P(t,T)
v
Yield Curve Basics
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Present value of a sequence of cash flows |

@ How do we determine the present value of a sequence of cash flows?

t T1 T> T3 o Th

PV=? ¢ o ¢ -+ «cp

@ We use the linearity of market prices: the price of a basket of assets is equal
to the sum of the prices of the individual components.

Discounting: Present Value of a sequence of cash flows

The present value in t of the sequence of known cash flows ¢ = [c1, - - - , ¢, that
will be available at future known dates T = [Ty, -+, Tp] is

PV (c,T) = Zn:c,- x P(t, T;).
i=1

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 7/171



Example (Computing the present value of a stream of cash flows)

Table 1: The present value of the amounts in column 2 that will be received at times in column
1 is given in column 4. The present values are computed using the term structure of discount
factors in column 3. Summing up the present values we obtain 252.4. To receive this amount
today is financially equivalent to receive the cash flows at future dates.

T(years) C P(t, T) PV(C)

1 50 0.99 49.5
2 20 0.96 19.2
3 100 0.94 94
6 30 0.91 27.3
9 40 0.87 34.8
10 30 0.86 25.8
Sum 252.4

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 8/171



Computing Present Value of a Stream

100 100
90 90
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70 70
60 60
50 50
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30 30
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10 l 10
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mc 50 20 100 30 40 30
HP(tT) 099 096 094 093 0914 091 088 0875 087 086
WPV(C) 495 192 94 273 348 258

mC mP(T) ®PV(C)

Figure 2: Computing the present value of a stream of cash flows.
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Spot rates |

Spot rates

A spot rate (or zero rate) for maturity T is the rate of return related to investing
in a zero-coupon bond, i.e. on an investment, starting at time t, providing a
unique payment at T.

To convert zcb prices into rates, two issues:

@ the compounding frequency: simple compounding,
periodic/annual/continuous compounding, discount convention.

@ The day-count convention: defining how time between two dates is
computed.

> The quantity oy 7 measures the year fraction between t and T computed
according to a given convention (e.g. ACT /360, ACT/ACT, 30/360).

> For example, if we use the ACT /360 convention and there are 47 days
between t and T, then

47
&e,T = 355 = 0-13055.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 10/171



The accrual factor a7, 7, and the day count convention
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Day Count Convention

The day count convention is defined as the way in which the ratio of the
number of days between coupon dates to the number of days in the reference
period (e.g., year) is calculated.
@ The most common day conventions for fixed rate bonds are
» A day count convention of actual days to maturity to actual days in the year
(ACT/ACT).
> A day count convention of 30-day months to maturity to a 360 days in the
year (30/360).
@ The numerator tells you how to calculate the number of days between two
successive coupon dates, the denominator tells you how to calculate the
number of days in the year:
> Act means the actual number of calendar days,
» 360 means “assume there are 360 days in a year”, and
> 30 means “assume there are 30 days a month”.

Also note: If a coupon date falls on a non-trading day, the coupon is moved
to a trading day following a certain convention. The actual amount paid on
the coupon date can be or cannot be then modified to account for it.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 12/171



Example (The day count convention 30/360 (ISDA))
@ The 30/360 method group a certain number of methods that have in
common the accrual factor as
360 X (Yo — Y1) +30 x (Mp — My) + (Dy — D)
360
but differs on how the Y;, M; and D; are computed.
@ The year fraction between January 31st, 2017 and February 28th, 2020 is:

D1 = 30, Dg = 28; Ml = 1, M2 = 2; Yl = 2017, Y2 = 2020,

therefore

360 x (2020 —2017) +30 x (2 —1) + (28 —30) _ 1108
360 ~ 360

= 3.07777.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 13 /171



Example (The day count convention ACT /360)

@ A year is 360 days long and the year fraction between two dates is the actual
number of days between them divided by 360.

@ The accrual factor is the actual number of accrued days divided by 365:
D> — Dy
360

where D> — D1 is the number of days between the two dates.
@ The year fraction between January 31st, 2017 and February 28th, 2020 is:

D, = 43889(usingExcel), Dy = 42766

therefore
43889 — 42766 1123

360 360 = 3.11944.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 14 /171



Compounding Conventions and Spot Rates

Convention Spot rate  Compounding frequency Use

Simple L(t, T) 1 Money Market
Compound Y (t, T) 1 YTM for bonds
Compound Ym(t, T) m YTM for US bonds
Continuous R(t, T) 00 Modelling
Instantaneous r(t) Modelling
Discount d(t, T) 1 US T-Bills

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 15 /171



From Discount Factors to Spot Rates

Table 2: From Discount Factors to Spot Rates: Common conventions for computing returns on
zcb. Examples are made assuming: P = 0.98,a; 7 = 0.25, m = 4.

Compounding Formula Example
Simple L(t,T) = L) oo 15998 — 8.1633%
1 1
Periodic Ym(t, T) = m ((ﬁ) mxay T 1) 4 ((ﬁ) 0% 1) — 8.1632%
1 1
Annually Y(£T) = (i) —1 (oks) "™ —1=84165%
Continuous R(t, T) = —nEleT) —In(0.98) _ 8.081%
Instantaneous  r(t) =limyr_R(t, T) = _al%_(rr,'r) .
=t
Discount d(t, T) = 1_0’27@ 16_02'598 =8%

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 16 /171



From Spot Rates to Discount Factors

Table 3: From Spot Rates to Discount Factors: Common conventions for computing zcb prices
from spot rates

Compounding Formula Example
Simple P(t, T)= W e Tessvoas = 098
Periodic P(t, T)= (1+Y7’"(t,1T))mX'Xt'T W =0.98
Annually P(t, T)= W W =0.98
Continuous P(t, T) = e RtT)aer e~8081%x0.25 _ ( og
Instantaneous  P(t, T) = E; (e‘ I r(s)ds> CAREFUL!
Discount P(t, T)=1—d(t, T)as 1 1—8% x 0.25 = 0.98

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 17 /171



Computing Present value (discounting) using spot rates

@ Discounting: compute the present value in t of the notional N that will be

received in T
PV (N)=NxP(t,T).

Simple convention

N
PV(N)= ——F——.
( ) 1+L(t, T)lxt,T
Annually compounded
PV (N) = N

1+ Y (¢t T))*r"
Continuously compounded

PV (N) = N x e ®7xR(tT)
Discount convention

PV (N)=Nx(1—d(t, T) X apT).

(@©Gianluca Fusai (Cass ) Yield Curve Basics
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Computing Final value (compounding) using Spot Rates

o Compounding: compute the value in T of the capital C that is invested in t

FV (N) = Ty

Simple convention
FV(C)=Cx(1+L(t, T)arT).
Annually compounded
FV(C) = Cx (14 Y (£, T))*T.
Continuously compounded
FV (C) = C x 7 xR(tT),

Discount convention

C

V(O = i ae D xan)

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 19/171



Term Structure of Spot Rates |

o It is the graph of the function mapping maturities into spot rates at time t:
it associates at each maturity the value of the spot rate from time t to the
desired maturity:

{T; — t,Spot Rate(t, T;)}i=1,... n-

@ The practice is to plot a set of simple rates versus time to maturity up to 1
year and then to plot annually compounded or continuously spot rates.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 20/171



Term Structure of Spot Rates Il

Typical US term structure shape
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Figure 3: Typical US term structure shape for different terms (1m-10Y) in the period 1st Aug.
2001 to 24th Jan. 2018
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Typical Shapes of the Term

Structure of Spot Rates
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Table 4: Top Left: US Swap Curve. Top Right: US Govt. Bottom Right: US Govt vs Swap
Curve. Bottom Left: Germany Spot Curve.
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The Term Structure moves in time

@ The important point is that a term structure changes over time.

@ This means that the present value of a bond will change over time, i.e. we
will be interested not only to measure the value of a position but to
understand how it changes over time.

@ The most common changes in the term structure shape are changes in level,
slope and curvature.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 23 /171



U5 torm structure of spot rates
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Figure 4: US term structure for different terms (1m-10Y) in the period 1st Aug. 2001 to 24th
Jan. 2018. Go to https://youtu.be/oJhUY9ZT1CI to see the US term structure movie.
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https://youtu.be/oJhUY9ZT1CI
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Figure 5: US discount factors over time: the discount factors are not constant and they are more
volatile longer the tenor.
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@ In a given day:
> the level is estimated taking the average of the spot rates

mlicid n
/MW@( C/.ym?u {U level (t Z
ﬂ CQMMS’@J\CA}_ i=1
> the slope is estimated taking the difference between a long term and a short

term rate

:M—'

slope(t) = R(t, Tp) — R(t, T1)

where for example, T1= 1 yr and T, =30 yrs.
> the curvature is estimated by the following quantity

curvature(t) = R(t, Tp) — 2R(t, Tm) + R(t, T1)
where for example, T,,= 10 or 15 yrs.
Table 5: Some statistics (US market)

Level (%) Slope (%) Curvature (%)

Mean 2.0017 2.1045 0.4586
Std. Dev. 1.3616 1.04 0.6531
Maximum 5.1856 4.01 1.99
Minimum 0.4322 -0.78 -1.62
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Some questions

@ Some questions:

© Where do we get the discount factors P (t, T) (or the spot rates) from?
* We distinguish market and implied curve: usually, the first ones are read directly
from the market, the others are constructed using market data.
* Besides we can define a curve for each different issuer/rating, that determines
the term structure of credit spreads.
@ We start by examining the following markets
* |bor-like markets: it provides quotations of simple spot rates up to 12 months.
* ZCB markets that provide direct information about the discount term structure.
* Fixed rate bond markets that provides information that needs to be someway
elaborated to produce the discount term structure.
© How we model term structure changes over time?
* We need a term structure model
* A model requires a quantity to be modelled.
* Depending on the choice we can build different models: short rate models,
(instantaneous) forward rate models, (discrete) forward rate models.
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Ibor-like indexes

@ Ibor-like indexes are indexes related to interbank lending between one day and
one year.

The rates are banks’ estimates but usually do not refer to actual transactions.

The so called contributor banks are of first class market standing and they
have been selected to ensure that the diversity of the money market is
adequately reflected.

o LIBOR is used as reference rate for bonds, derivatives (swaps and
caps/floors), mortgages and so on. This has created a conflict of interest in
the past and fraudulent actions connected to the determination of the
LIBOR, the so called LIBOR scandal.

@ In the US market the setting procedure of the LIBOR rates has been recently
changed. SOFR is now based on transactions in the Treasury repurchase
market, where banks and investors borrow or loan Treasuries overnight.

@ A similar reform is underway in the Euro market, with the ESTER rate
replacing in the near future the EURIBOR rate.

@ Still a lot of open problems.
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How Libor is fixed

@ |bor rates are published once per day and are usually computed as the
trimmed average between rates contributed by participating banks.

> In the Euro zone, for each maturity, the highest and lowest 15% of all the
quotes collected are eliminated. The remaining rates are averaged and
rounded to three decimal places. The resulting rate is then published to the
market at approximately 11.00 am Frankfurt time.

> In the ICE LIBOR, the highest and lowest 25% are removed and the rest is
averaged (the actual number of banks removed depends on the number of
submi tters for each currency). The resulting rate is then published to the
market at approximately 11.45 am London time.

» JBA TIBOR (Tokyo InterBank Offered Rate) excludes the top two and the
bottom two reference rates for each maturity and takes the average of the
remaining rates.
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Table 6: The panel of contributing banks currently (January 2020) consists of 18 CONTRIBU-

TORS.

Belgium
Belfius

France
BNP-Paribas
HSBC France
Natixis

Crédit Agricole s.a.

Société Générale

Germany
Deutsche Bank
DZ Bank

Italy

Intesa Sanpaolo
UniCredit

ianluca Fusai (Cass )

Luxembourg

Banque et Caisse d’Epargne
de I'Etat

Netherlands

ING Bank

Portugal

Caixa Geral De Depésitos
(CGD)

Spain

Banco Bilbao Vizcaya Argen-
taria

Banco Santander
CECABANK

CaixaBank S.A.

UK

Barclays
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Table 7: Quotation mechanism of Euribor (30th Jan 2018). Excel file: Fl_BasicYields, Sheet:

Computing LIBOR

1 Week | 2 Weeks | 1 Month | 2 Months | 3 Months | 6 Months | 9 Months | 12 Months |

} BNP-Paribas } -0.41 -0.42 041 -0.40 035 034 027 -0.26 |
| Monte Dei Paschi Di Siena | -0.38 -0.37 -0.37 -0.34 -0.33 -0.28 -0.22 -0.19 |
| Bilbao Vizcaya Argentaria | -0.38 -0.37 -0.37 -0.34 -0.33 -0.28 -0.22 -0.19 |
| Banco Santander | -0.38 -0.37 -0.37 -0.34 -0.33 -0.27 -0.22 -0.19 |
| Caisse d’Epargne de I'Etat | -0.38 -0.38 -0.37 0.34 -0.33 -0.28 -0.22 0.19 |
| Barclays Bank | -045 -0.43 -0.40 -0.38 -0.37 -0.34 -0.31 -0.28 |
| Belfius | -037 -0.37 -0.37 -0.35 -0.33 -0.28 -0.23 -0.20 |
| CECABANK | -038 -0.37 -0.37 -0.34 -0.33 -0.28 -0.22 -0.19 |
‘ Caixa Geral De Depésitos ‘ -0.37 -0.36 -0.36 -0.33 -0.31 -0.26 -0.20 -0.18 ‘
| CaixaBank S.A. | -0.38 -0.37 -0.37 -0.34 -0.33 -0.28 -0.22 -0.19 |
| Crédit Agricole s.a. | -0.38 -0.37 -0.36 -0.34 -0.32 -0.30 -0.26 022 |
| DZ Bank | -0.39 -0.39 -0.38 -0.35 -0.32 -0.26 -0.20 -0.14 |
| Deutsche Bank | -037 -0.36 031 031 -0.31 -0.19 -0.15 -0.11 |
| HSBC France | -037 -0.37 -0.37 -0.34 -0.33 -0.27 -0.21 -0.18 |
| ING Bank | -036 -0.36 -0.36 -0.34 -0.33 -0.28 -0.23 -0.19 |
| Intesa Sanpaolo | -038 -0.37 -0.37 -0.34 -0.33 -0.27 -0.22 -0.19 |
| National Bank of Greece | -0.37 -0.37 -0.37 -0.34 -0.32 -0.27 -0.21 -0.18 |
| Natixis | -0.38 037 -0.37 -0.34 -0.33 -0.28 -0.22 -0.19 |
| Société Générale | -0.36 -0.35 -0.36 -0.29 -0.28 -0.33 -0.28 -0.26 |
| UniCredit | -038 -0.38 -0.38 -0.34 -0.33 -0.27 -0.21 -0.18 |
Trimmed Average | -0377 | 0371 | -0369 | -0341 | -0328 | -0278 | -0222 | -0191 |




Table 8: Computing EURIBOR from bank contributions

Sorted Quotes | 1Week | 2Weeks | 1Month | 2Months | 3 Months | 6 Months | 9 Months | 12 Months |
1 -0.45 -0.43 -0.41 -0.40 -0.37 -0.34 -0.31 -0.28
2 -0.41 -0.42 -0.40 -0.38 -0.34 -0.26
3 -0.39 -0.39 -0.38 -0.35 -0.33 -0.26
4 -0.38 -0.38 -0.38 -0.35 -0.30 -0.22
5 -0.38 -0.38 -0.37 -0.34 -0.28 -0.20
6 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
7 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
8 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
9 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
10 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
11 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
12 -0.38 -0.37 -0.37 -0.34 -0.28 -0.19
13 -0.38 -0.37 -0.37 -0.34 -0.27 -0.19
14 -0.37 -0.37 -0.37 -0.34 -0.27 -0.19
15 -0.37 -0.37 -0.37 -0.34 -0.27 -0.18
16 -0.37 -0.37 -0.36 -0.34 -0.27 -0.18
17 -0.37 -0.36 -0.36 -0.34 -0.27 -0.18
18 -0.37 -0.36 -0.36 -0.33 -0.26 -0.18
19 -0.36 -0.36 -0.36 -0.31 -0.26 -0.14
20 -0.36 -0.35 -0.31 -0.29 -0.19 -0.11

‘ Trimmed Average -0.377 -0.371 -0.369 -0.341 -0.278 -0.191

e aAdyry g concecufed

e mwparf% riok exlste
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Useful websites

o Useful information available at
https://www.theice.com/iba/libor
http://www.euribor-ebf.eu/euribor-org/about-euribor.html
https://www.emmi-benchmarks.eu/euribor-org/faq.html#faq2
http://www. jbatibor.or. jp/english/about/
https://en.wikipedia.org/wiki/Libor_scandal
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IBOR conventions |

@ The IBOR conventions are the same for all currencies.

@ IBOR rates follow the simple compounding convention.

@ For all currencies other than EUR and GBP the period between Fixing Date
and Value Date will be two London business days after the Fixing Date.

© However, if that day is not both a London business day and a business day in
the principal financial center of the currency concerned, the next following day
that is a business day in both centers shall be the Value Date.

@ The business day convention is modified following 1 and the end-of-month rule

applies.

For all currencies except GBP, the day-count convention is ACT/360.

For GBP, the Fixing Date and Value Date are the same (0 day spot lag).

©0
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IBOR conventions Il

@ Some |bor-like indexes and their main characteristics are summarized in the

following Table.

Currency Name Maturities  Convention  Spot Lag  Bloomberg
CHF LIBOR O/N-12M ACT /360 2 SFO0xxx
EUR EURIBOR 1W-12M ACT /360 2 EUROxxx
EUR EURIBOR 1W-12M ACT /365 2
EUR LIBOR O/N-12M ACT/360 2 EU00xxx
GBP LIBOR O/N-12M ACT /365 0 BP00xxx
JPY LIBOR O/N-12M ACT/360 2 JY00xxx
JPY Japan TIBOR 1W-12M ACT /365 2
JPY Euroyen TIBOR 1W-12M ACT /360 2
uUsb LIBOR O/N-12M ACT /360 2 US00xxx

Table 9: Ibor-like indexes for the main currencies.

In the Bloomberg code, the xxx should be
replaced by the tenor (T/N, 01W, 11M, etc.) and followed by Index.

IDates are adjusted to the next good business day unless that day falls in the next calendar

month in which case the date is adjusted to the previous good business-day.
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Tenor, Accrual Factor and Day Count Convention |

Tenor The time length of the investment is called tenor
@ A deposit starting today and ending in 3 months has a 3 months tenor.
Spot Lag
@ The number of business days between the Trade Date and the Value Date.
@ Money changes hands on the Value Date.

@ Exception is the Overnight (O/N) deposit. Money changes hands on the
Trade Date.

Day Count Convention The year fraction between two dates is computed
according to a particular day count convention, eg. ACT/360.

e ACT /360 means that we have to divide the effective number of days between
starting and ending date by 360.
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Tenor, Accrual Factor and Day Count Convention I

Accrual Factor The year fraction between two dates.

o If the effective number of days between two dates is 92 and the day count
convention is ACT /360, the accrual factor turns to be

92
360

o If the effective number of days between two dates is 92 and the day count
convention is ACT /365, the accrual factor turns to be

92

365
End of Month If the 1 month quote for 28 February intended for a money market
deposit maturing on 28 March or on 31 March (assuming obviously they are

business days)? The EOM rule says that the maturity date for this will be 31
March and not 28 March.
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LIBOR and Euribor Quotes

Tenor EUR ushD GBP CHF EURIBOR

O/N  -0.39029 0.3802 0.48313 -0.7596 -0.34
1W  -0.37643 0.401  0.48688 -0.7966 -0.357
2W -0.352
1M -0.34914 0.4352 0.50881 -0.7708 -0.343
2M  -0.30286 0.52425 0.54825 -0.747 -0.289
3M  -0.27286 0.63835 0.59088 -0.7284 -0.252
6M  -0.15571 0.9139 0.74625 -0.646 -0.144
oM -0.078
1Y -0.029 1.2441 1.02713 -0.5236 -0.013

Table 10: Source: Il Sole 24 Ore, April, 27 2016. All quotations are in percentage terms.
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Computing Final Value using LIBOR rate g’”‘fm canfenc.on

[ th,T(C):cX(H@)xat,T). ] 1)

Cx(1+L(t,T)xarT)

S
! T

—-C

Computing Present Value using LIBOR rates

1
PV, NY=NX ——FM . 2
tT(V) % 14+ L(t, T)ae, 1 (2)
INx L
THL(t, Tag 7
1 T
l
—N
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Fact (LIBOR: Discounting and Compounding)
If L(t, T) is the LIBOR rate quoted in t for expiry T, then:

@ the discount factor is

1
P = 7= Lt T) X anr

@ the final value is
FV(t, T)=1x (14+L(t, T) X ar 1)

where
@ t is the value date (2 business days after the trade (fixing) date), and
o T is the anniversary date of the value date according to the rolling day rule
modified following (end-of-month).
® «; T is the year fraction between t and T computed according to a particular
day count convention, as in Table 9,

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 45 /171



The term structure of LIBOR rates

@ The plot of L(t, T) varying T is called the term structure of LIBOR rates.

@ The plot of P(t, T) varying T is called the term structure of money market
discount factors.

@ They can be plotted for maturities up to 1 year.
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Example (Case Study. Building the discount curve in the money

market)

See Excel File: BasicYields.xlsx Sheet: LIBOR
Let us consider EURIBOR quotes on the Fixing Date of April 27th, 2016 (W)
(Value Date: April 29, 2016 (F)). Our steps: a) calculate the start and end dates
for each of our quote; b) apply the modified following business day convention
(yellow cells)
Notice that the Value Date is the last business day of the month, because
30-Apr-2016 is a Saturday. So the end of month (EOM) rule applies.

Anniversary Date D M Y  Adjusted Maturity = Modified Following
O/N Th. 28 Apr. 2016 1 Th. 28 Apr. 2016  Th. 28 Apr. 2016
1w F 6 May 2016 7 F 6 May 2016 F 6 May 2016
2W F 13 May 2016 14 F 13 May 2016 F 13 May 2016
1M T 31 May 2016 (EOM) 1 T 31 May 2016 T 31 May 2016
2M Th 30 June 2016 (EOM) 2 Th 30 June 2016 Th 30 June 2016
3M S 31 July 2016 (EOM) 3 M 1 Aug 2016 F 29 July 2016
6M M 31 Oct. 2016 (EOM) 6 M 31 Oct. 2016 M 31 Oct. 2016
IM Th 31 Jan. 2017 (EOM) 9 M Th Jan. 2017 Th 31 Jan. 2017
1Y S 30 Apr. 2017 (EOM) 12 Th 2 May 2017 F 28 Apr. 2017

Table 11: Computing the Final Dates
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Example (2. Building the term structure of discount factors)

Table 12: Computing Discount Factors. For mple, the 1 year discount f:
i

has been computed according to

1+(—0.013%) x 38— 1+(-0.013%)x1.01111

= 1.0001315.

Contract  DAYS O T LIBOR P(t, T)

O/N 1 0.002778 -0.0034  1.0000094

1 week 7 0.019444 -0.00357 1.0000694
2 weeks 14 0.038889 -0.00352  1.0001369
1 month 32 0.088889 -0.00343  1.0003050
2 months 62 0.172222 -0.00289  1.0004980
3 months 91 0.252778 -0.00252 1.0006374
6 months 185  0.513889 -0.00144 1.0007405
9 months 277 0.769444 -0.00078 1.0006005
12 months 364  1.011111 -0.00013 1.0001315

(@©Gianluca Fusai (Cass ) Yield Curve Basics

SMM269

49 /171


Heqing


Example (3. Computing Final Value)
Given the Trade Date of April, 27, we borrow 1,000,000 EUR for 6 months tenor.

Trade Wed. April 27th, 2016
Spot Lag 2 Bus Days
Value Date t F Apr 29th, 2016 (EOM)
Maturity T M Oct. 31, 2016
Days(t, T) 185 |, 0D O/DW(H OW
Act/360 oy 1 0.513888839 185
LIBOR -0.1440% X 35 )
Deposit in t 1,000,000.00
Final Value in T 999,260.00 o —— | 4

The Final value is computed according to

185
FV; 7(1,000,000) = 1,000, 000 x (1 —0.144% x 360) = 999, 260.00.
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Example (4b. Cash Flows Diagram)

-+1,000,000 EUR -999,260.00 EUR

i i >  (months)

Apr 29th, 2016 Oct. 31st, 2016

Figure 11: The cash flows in a EURIBOR deposit. The Final value is lower than the initial value
due to the negative interest rate
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Example (5. Computing Present value)

@ Given the trade date of April, 27, we want to make a deposit today to receive
1,000,000 EUR in 6 months.

@ The present value of 1,000,000 is

1,000, 000
PV, 7 (1 = e
w7 (00, B30y 1 — 0.144% x 0.513888889
= 1,000,000 x 1.000741

= 1,000, 741EUR.

@ This is the amount that we have to deposit today.
@ In 6 months, we will receive 1,000,000 EUR.
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Example (5b. Cash Flows Diagram)

-1,000,741 EUR -+1,000,000 EUR

i i >  (months)

Apr 29th, 2016 Oct. 31st, 2016

Figure 12: The cash flows in a EURIBOR deposit. The Final value is lower than the initial value
due to the negative interest rate
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Question

On April 27th, 2016, the US LIBOR rate for a 3 months tenor is 0.63835%.
Compute:

@ the Final Value of 1ml USD deposited on Apr 29th, 2016;
@ the Present Value of 1ml USD to be paid on Jul 29th 2016;

TV - [, 000, ooax/J + 0675555 % 360
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Answer |

There are 91 days between the Start Date and the End Date. Therefore:
e Final Value. The Final Value of 1ml USD deposited on Apr 29th, 2016 is

91
+1ml x <1 +0.63835% x 360) = +1,001, 614.

-1ml USD +1,001, 614 USD

"

S

Apr 29th, 2016 Jul. 29th, 2016

> (months)

7

SMM269
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Answer |l

o Present Value. The present value of 1ml USD to be paid on Jul 29th, 2016
is

+1ml
1+ 0.63835% x 360

=998, 389USD

+998,389 USD  —1,000,000 USD

! !

| | | | > (months)

S

Apr 29th, 2016 Jul. 29th, 2016
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Example (Case Study: Using LIBOR Rate)

This case study is also presented in the Excel File BasicYields.xlsm, Sheet:
Using LIBOR

@ Let us consider the following term structure of EURIBOR Rates on April 27,
20016.

Days Accrual Rate DF

1 0.002778  -0.0034 1.000009
7 0.019444  -0.00357 1.000069
14 0.038889 -0.00352  1.000137
32 0.088889 -0.00343 1.000305
62 0.172222  -0.00289  1.000498
91 0.252778  -0.00252  1.000637
185 0.513889 -0.00144 1.000741
277 0.769444  -0.00078 1.000601
364 1.011111  -0.00013  1.000131

Table 13: Market Quotes




@ We are interested in computing the present value of the following schedule of
cash flows

Time (Days) Cash Flows

31 -100
79 300
289 12
350 -300
352 250
361 240

Table 14: Contract Cash Flows

@ We observe that the cash flows do not fall exactly on market dates. So we
have to proceed via some interpolation.

@ The simplest procedure is to use linear interpolation on LIBOR rates.



o Let us suppose that we need the LIBOR rate for date T, i.e. L(t, T):

a. we have quotes for Ty and Ty, T1 < T < Ty, i.e. L(t, T1) and L(t, T>);
b. Linear interpolation consists of

A L-T T-T

L(t, T —— X L(t, Tr).
LT+ =g L) | O

|

|

|

!
T T T2 Time
d. Then the interpolated discount factor is

1
T4+L(tT) xar T

P(t, T)=



@ So for example for the cash flow due in T = 31 days, the interpolated rate
can be obtained using the T; = 14 days LIBOR rate and the T = 32 one:

231 31— 14
~0.352¢
g < (703520 + 5

L(31days) = x (—0.343%) = —0.3435%.

@ Then we can compute the corresponding discount factor

1
P(t,t + 31days) = = 1.000296.
1-0.3435% x 54

@ Therefore, the present value of the due cash flow is

PV(—100) = —100 x 1.000296 = —100.03.



@ We can proceed in a similar way for all relevant dates. We obtain the

following Table

Time (Days) Cash Flows Interp. LIBOR Interp. DF PV(CF)
31 -100 -0.00344 1.000296 -100.03

79 300 -0.00267 1.000587 300.18

289 12 -0.00069 1.000555 12.01

350 -300 -0.00023 1.000228 -300.07

352 250 -0.00022 1.000215 250.05

361 240 -0.00015 1.000153 240.04
Sum 402.1751

Table 15: Computing the present value of the cash flows

@ The fair value of the cash flows schedule is 402.1751 EUR.



Question

The 32 days US LIBOR rate is 0.004352.

The 62 days US LIBOR rate is 0.005242.

Determine the Present Value of 100 USD due in 50 days.

If I invest today 200 USD for 50 days, how much do | get at the End date?

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 62 /171



Answer

@ The interpolated 50 days US LIBOR rate is

62 — 50 50 — 32
62— 30 x 0.004352 + 62—

0.4 x 0.004352 + 0.6 x 0.005242
0.0048863.

x 0.005242

@ The interpolated discount factor is

1

55 — 0.999322.
1+ 0.0048863 x =¢5

@ The Present Value of 100 USD due in 50 days is
100 x 0.999322 = 99.9322.

o If | invest today 200 USD for 50 days, at the End Date | have

200 x <1 + 0.0048863 x ??600> = 200.1357306.
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LIBOR fallback

Fallback refers to the replacement of LIBOR with new indexes.

The idea of the new index is that it should reflect real transactions rather
than expectations.

In part, this has already happened for US Fed Fund (SOFR, Secured
Overnight Financing Rate). SOFR is a broad measure of the cost of
borrowing cash overnight collateralized by Treasury securities.

Euribor should be replaced in the future by ESTER (Euro Short Term Rate),
that will be the European Risk Free Rate (RFR).

@ ESTER will replace EONIA (and EURIBOR) as the most important interest
rate in Europe.

Useful readings:

https://www.clarusft.com/libor-fallbacks/
https://www.ecb.europa.eu/paym/initiatives/interest_rate_
benchmarks/WG_euro_risk-free_rates/html/index.en.html
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Ris Advis

LIBOR — decrease of importance

Unsecured lending has decreased a lot since the crisis.
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New benchmarks

There is a push by regulators, e.g. FSB, to move away from IBOR
and to RFR.
m GBP (SONIA): Published by Bank of England. Unsecured.

m CHF (SARON): Switch from TOIS to SARON end 2017.
Secured.

m USD (SOFR): Published by the Fed since April 2018. Secured.

m EUR (ESTER): To be published by ECB from October 2019.
Unsecured.

CASS Business School — Financial Engineering Workshop — 6 February 2019
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Zero-Coupon Bond
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Zero-Coupon Bond

BOTS 0 08/14/17 € 100.192 /100,200 -.340 /-.354
- X -- Source BGN
97) Settings - Page 1/11 Security Description: Bond

Y Notes B
26 Issuer Description
Pages Issuer Information Identifiers
1)Bond Info Name  BUONI ORDINARI DEL TES 1D Number  QZ1042600
‘é;’égi&nm Industry Sovereigns ISIN 110005211138
W) Guarantors Security Information FIGI BBGOODI2GKKZ
15 Eond Ratings Mkt Iss Euro-Zone Bond Ratings
16} Identifiers Country IT Currency EUR Moody's Baa?u
D) Exchanges Rank  Unsecured Series s&P NA

1) Inv Parties . - -
W) Fees, Restrict Coupon  0.000000 Type Zero Co... | Composite NR

) Schedules Cpn Freq

2] Coupons Day Cnt ACT/360 Iss Price  100.19400 | Issuance & Trading

Quick Links Maturity 08/14/2017 Amt Issued/Outstanding

LIALLQ Pricing BULLET EUR 6,600.00 (MM) /
BQRD Quate Recap | 1g5 Sprd EUR 6,600.00 (MM)
;;IE? ZngEA:t'fotn Calc Type (527)ITALY:TRSY BILL Min Piece/Increment

F)CF Prospectus Announcement Date 08/05/2016 1,000.00 / 1,000.00

TICN  Sec Mews Interest Accrual Date Par Amount 1,000.00
#|HDS Holders 1st Settle Date 08/12/2016 | Book Runner

F)VPR Underly Info | 1st Coupon Date Exchange MILAN

#8) Send Bond

Fustralia §1 2 4777 3600 Brazil S511 2305 9000 Furope 44 20 7330 7500 Germeny 43 69 9204 1210 Hong Kong 352 2077 G000
Japan 81 3 3201 300 Singapore £5 6212 1000 UE. 1212 518 2000 Copuright 2017 Bloonbera Finance L.F
SN 618953 He41-5451-0 19-Tan—17 19:04.:25 GWT GHT+0 .00

Figure 13: A Zero-Coupon bond
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Zero Coupon Bond: Cash Flows Diagram
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Figure 14: Cash Flows of a zero-coupon Bond
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Main Terms

@ Announcement Date: the first day the public will receive information
regarding the new security issue.

Issue size: number of bonds issued multiplied by the face value.

Issue Price: the price paid by the buyer at the issue date.

Principal (Par Amount, Maturity Value, Notional, Face Value): the
amount of money the issuer will pay the holder of a bond at the maturity
date.

o Maturity: the date at which the principal (notional, face value) is redeemed,
i.e. the debt will cease to exist.
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The Bond Schedule

Cash Flows of a Zero-Coupon Bond

Issue Date August 12th, 2016

Issue Price 100.194

Maturity Date August 14th, 2017

Face Value 100

Coupon 0 (zero-coupon bond)

Day Count Convention ACT /360 (for yield computation)

Dates Adj. Dates T; Cash Flows

Fr Aug 12th, 2016 Fr Aug 12th, 2011 -100.194
Sat Aug 12th, 2017 Mon Aug 14th, 2017 100

(@©Gianluca Fusai (Cass ) Yield Curve Basics

SMM269

69 /171



Coupon Bond
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Coupon Bond |
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@ ol — — — —
=)
—100 |-
—100 L L L I
t T T2 T3 Th

Figure 15: Cash Flows of a Coupon-Bearing Bond

@ Fixed payments (coupon) at predeterminated dates.

Cash Flow Dates

@ Repayment of the principal (nominal value) at maturity (usually greater than

3 years at issue).
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Coupon Bond I

o Examples are
» Treasury Notes (mature in two to ten years) and Treasury Bonds (have the
longest maturity, from twenty years to thirty years) in the US;
> Bunds in Germany;
> BTPs in Italy;
» Gilts in UK;
» OATs in France;
» Bonos in Spain.

@ Issuers can be governments, financial and corporate firms.
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Coupon Bond

RFLBBG 4 % 05/09/18 105.065 /105.363 .548 /.328
X - Source BVAL
RFLEEG 4 % 05/09/1 90 Settings - Page 1/11 Security Description: Bond
MWNotes [

24 Issuer Description

Pages Issuer Information Identifiers
E;igg& i:;g Name  RAIFF LANDESBK BURGENLD ID Number  EI6459263
1) Covenants Industry Banks ISIN ATC00B113048
W) Guarantars Security Information FIGI BBGOOIMMITS6
151 Bond Ratings Mkt Iss Euro-Zone Bond Ratings
18] Identifiers Country AT Currency EUR Moody's NA
U Exchangss Rank Unsecured Series 11/P S&P NA
:2; i‘;zfﬁ‘im Coupon  4.500000 Type Fixed Fitch NA
) Schedules Cpn Freq Annual DBRS NA
21) Coupons Day Cnt ACT/ACT Iss Price  100.00000 | Issuance & Trading
Quick Links Maturity 05/09/2018 Amt Issued/Outstanding
TLIALLQ Pricing BULLET EUR 49,000.00 (M) /
BORD Quate Recap | 1gg Sprq EUR 49,000.00 (M)
M TOH Trade Hist . ) N P
BICAC Corp Action Calc Type (71)AUSTRIA:ISMA METHD Min Piece/Increment

Prospectus  |Announcement Date 04/14/2011 1,000.00 / 1,000.00

S8c Mews Interest Accrual Date 05/09/2011 | Par Amount 1,000.00
HIHDS Holders 1st Settle Date 05/09/2011 | Book Runner RFLBBG
FIVPR Underly Info | gt Coupon Date 05/09/2012 | Exchange NOT LISTED

OBLIGATIONEN. PRVT PLCMT.

#8) Send Bond

Fustralia §1 2 4777 3600 Brazil S511 2305 9000 Furope 44 20 7330 7500 Germeny 43 69 9204 1210 Hong Kong 352 2077 G000
Japan 81 3 3201 300 Singapore £5 6212 1000 UE. 1212 518 2000 Copuright 2017 Bloonbera Finance L.F
SN 618953 H41-5451-2 19-Tan—17 15:11:15 GWT GHT+0:00

Figure 16: Fixed rate bond
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Main Terms

Interest Accrual Date: date at which the first coupon starts to accrue.

1st Settle Date the date from which a bondholder is entitled to receive
interest payment (coupons).

1st Coupon Date: date at which the first coupon will be paid.

Coupon: the interest amount that is paid periodically (e.g. 4.5% per year)
to the bondholder by the issuer up to the maturity date; It can be fixed or

floating.

o Period or Frequency: here Annual, i.e. the number of coupons received in a
given year.

@ Calc Type: the method used to determine the yield of the bond, i.e. the

compounding method.

e Day Count Convention: ACT/ACT. The choice of time measurement used
in computing coupons.
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Rolls Dates

@ Each bond has interest payments on roll dates that are the same each year
(aside adjustments for holidays and weekends).

@ For example, if a bond has an issue date of 1-Apr-2016 and matures on
1-Apr-2020, and has semi-annual coupons, the normal roll dates would be 1st
April and 1st October each year. Each semester we receive half (notional)
coupon.

Example (Regular Roll Dates)

Issue Date April 1st, 2016
Maturity Date  April 1st, 2020

Frequency 2
Coupon 5
Times A. 1st-16  O. 1st- 16 A. 1st-17 .- ... A. 1st-20
Days 183 182 cee e 182
Cash Flow Issue Price 2.5 25 cee e 102.5

@ We can have bonds with irregular roll dates, e.g. a so called short first or last

OLIDON
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The Bond Schedule

The coupon payment at date T; is equal to
C(T,') =CcX Wi—1,i X N,

where

@ c: yearly coupon and N is the face value;

@ «;_1,;: is called coupon tenor, i.e. the fraction of time between coupon dates
T,'_l and T,';
o for regular coupon periods the convention ACT/ACT ISMA means

1

Wi ;= ——
i=Li Frequency

e.g. if the coupons are semi-annual, then Frequency = 2 and so

Ri-1i =75
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Example (Case Study: Payment schedule of a Coupon Bond)

DES Corp DES

SECURITY DESCRIPTION Page
RAIFF LB BURGEN RFLBBG4 % 05/18 NOT PRICED
Additional Sec Info
me RAIFF LANDESBK BURGENLD i ATO(>05113048 ) ALLQ
e Cooperative Banks umb ) Corporate Actions
ssue Euro-Zone 4 Ratings
) Custom Notes
) Identifiers
Disclaimer Page
) Sec. Specific News
) Involved Parties
) Issuer Information
) Pricing Sources
7 Related Securities
ncement Dt 4/14/11 49,000.00 (M) 3 Issuer Web Page
Int. Accrual Dt 5/ 9/11 Min Piece/Increment
1st Settle Date 5/ 9/11 1,000.00/ 1 OE)O 00
1st Coupon Date 5/ 9/12 Par Am t 000. 00
Iss Pr 100.0000

RFLBBG
NO PROSPECTUS NOT LISTED 66) Send as Attachment
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Example (1. Main Informations)

Main Information

ISIN AT000B113048
Issue Date April 14th, 2011
Maturity Date May 9th, 2018
Frequency 1
Coupon 4.5
First Accrual Date May 9th, 2011

Day Count Convention ACT/ACT

Here, there is no odd coupon because the coupon dates are the same each year
(aside adjustements for holidays and weekends).
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Example (2. Coupond Dates and cash flows)

@ The periodic coupon is equal to
C(Ti) =cxaj_1,;xN=45%x1x100 =45,

@ Unadjusted coupon dates are on May 9th of each year, starting in 2011 (First
Accrual Date) and ending in 2018 (Maturity Date).

© We can complete the first column of the Table below. The first letter refers
to the day of the week.

@ Then we adjust the payment dates for weekends. We should adjust for
holidays as well (but | do not have them for Austria!).
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Example (3. Cash Flows Table)

We have the payment schedule below
Coupon Dates  Adj. Cpn Date T; a;_3; Coupon Notional Cash Flows
m may 9, 2011 m 9 may, 2011
w 9 may, 2012 w 9 may, 2012 1 4.5 0 4.5
th 9 may, 2013 th 9 may, 2013 1 4.5 0 4.5
f 9 may, 2014 f 9 may, 2014 1 4.5 0 4.5
s 9 may, 2015 m 11 may, 2015 1 4.5 0 45
m 9 may, 2016 m may 9, 2016 1 4.5 0 4.5
tu 9 may, 2017 tu 9 may, 2017 1 45 0 45
w 9 may, 2018 w 9 may, 2018 1 4.5 100 104.5
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Example (4. Day Count Convention )

@ Then in the third column we compute the coupon accrual factor according to
the day count convention ACT/ACT (ISMA Method). Accordingly, we have

Days in the period
Denominator

Accrual Factor =

where

Days in the period: actual number of days from and including the last
coupon date to, but excluding, the current value date.

Denominator: is the actual number of days in the coupon period multiplied
by the number of coupon periods in the year.

@ In practice, having an annual frequency, according to the ACT/ACT
convention, this accrual factor is always equal to 1.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 81/171



Coupon Bond with semi-annual coupons

T 2% 11/30/23 99-02 /99-02+ 2.273/2.271
At 19:18 i - X - Source BGN
97) Settings - Page 1/11 Security Description: Bond

179 Bond Description 26 Issuer Description
Issuer Information Identifiers
11Bond Info Name  US TREASURY N/B 1D Number 912828057
j;’c‘:sgn‘;f; Tndustry US GOVT NATIONAL cusIp 912878057
§j Guaraniors Security Information ISIN US912828U576
51Bond Ratings Issue Date 11/30/2016 SEDOL 1 BDR7093
6] Identifiers Interest Accrues 11/30/2016 FIGI BBGOOFBD3INS
7)Exchanges 1st Coupon Date 05/31/2017 Issuance & Trading
#Inv Parties Maturity Date 11/30/2023 Issue Price 99.419378
9)Fees, Restrict R . R
) Schedules Floater Formula N.A. Risk Factor 6,287
11) Coupons Workout Date 11/30/2023 Amount Issued 30980 (MM)
Coupon 2.125 Security Type USN | Amount Outstanding 30980 (MM)
Quick Links Cpn Frequency S/A Type FIXED Minimum Piece 100
BJALLQ Pricing Mty/Refund Type NORMAL  Series Minimum Increment 100
ﬁifffsfsfsiszgzﬂ Calc Type  STREET CONVENTION A Holdings 9.6194
oW Sec Mews | Day Count ACT/ACT
F)HDS Holders Market Sector US GOVT
Country  US Currency usb
TENDERS ACCEPTED: $28000MM.

6) Send Bond

Fustralia §1 2 4777 3600 Brazil S511 2305 9000 Furope 44 20 7330 7500 Germeny 43 69 9204 1210 Hong Kong 352 2077 G000
Japan 81 3 3201 300 Singapore £5 6212 1000 UE. 1212 518 2000 Copuright 2017 Bloonbera Finance L.F
SN 618953 H41-5451-0 19-Tan—17 19:13 46 GWT GHT+0 .00

Figure 17: Fixed rate bond
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Cash flows of a bond with semi-annual coupons

@ In this case the bond has semi-annual coupons.

@ Therefore every semester, the bond pays a coupon equal to
1
C(T;) =2.125% x 5 x 100 = 1.0625.

@ Notice that US treasury securities follow month-end convention, so if the
maturity is at month-end, then the assumed coupon dates are also at
month-end (e.g. March 31st rather March 30st)

@ The dates at which these coupons are paid are the 31st of May and the 30th
of November of each year, up to Nov. 30th, 2023.

@ The first coupon is paid on May 31st, 2017.
@ Last coupon is paid on November 30st, 2023.

@ On this date we also receive back the principal value.
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Question.

Consider a bond with quarterly coupons, coupon at 4%, face value of 100, expiry
in 12 months. Build the bond payment schedule.
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Answer.

We have
Time Coupon Tenor Cpn Notional Cash Flow
0
0.25 0.25 1 0 1
0.5 0.25 1 0 1
0.75 0.25 1 0 1
1 0.25 1 100 101
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Question.

Consider a bond with quarterly coupons, coupon at 4%, face value of 100, expiry
in 8 months. Build the bond payment schedule.
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Answer.

We have
Time Coupon Tenor Cpn Notional Cash Flow
0
2/12 0.25 1 0 1
5/12 0.25 1 0 1
8/12 0.25 1 100 101

Table 16: In order to build the payment schedule, (normally) we start from the bond maturity and
in a backward procedure we determine all the previous payment dates.
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Market Quotations Coupon Bond |

@ When you buy a bond in the secondary market, in general this will happen
between coupon dates.

@ This means that you have to pay the seller a full price, i.e. to recognize to
him the matured coupon fraction.

@ The full price (or dirty price or invoice price or gross price), consists of two
components:

» Clean Price:
Quoted price of the bond without the accrued interest.
> Accrued interest:
This amount compensates the seller of the bond for the coupon interest earned
P\/ from the time of the last coupon payment to the settlement date of the bond.
»NInvoice Price= Clean Price+Accrued interest.
> A Bond quotes at Par if Invoice Price=Face Value.
» A Bond quotes above the Par if Invoice Price>Face Value.
> A Bond quotes below the Par if Invoice Price<Face Value.
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Heqing

Heqing


Market Quotations Coupon Bond Il

Formula for Accrued Interest

In the majority of cases the accrued interest which has to be added to the price is
equal to:

where

c is the annual coupon rate,

m the coupon frequency,

d; is the number of days accrued since last coupon payment,
dy is the number of days in the coupon period.

Therefore

Gross Price=Clean Price+Accrued Interest.
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Heqing


Computation of the Accrued Interest

_ C
Coupop = =
L J
d
Last Coupon Date Value Date Next Coupon Date

do
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Question.

Consider a German Bund with annual coupons, coupon at 2%, face value of 100,
expiry in 17 months. The bond clean price is 103. Build the bond cash flows

schedule. For your convenience measure time in months and round to the second
digit.

FVv=4op cw(m:.z% Tt = ;Z_q_'
z
Cloan frie =10 Iooya = 5
9 1z 7 It
NG N G 2xX— <73
,/ / ! = 1667
< L’_\/,\/ ‘
= C/DC/( /7%\& :/04/!(7-
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Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing


Answer.

Time (months) CF Amount
0 -Dirty Price -104.17
5 Cpn 2
17 Cpn+FV 102

Table 17: The coupon period is 12 months, i.e. m = 1. The periodic coupon is 2%. Last coupon
has been paid 7 months ago. The Accrued Interest is computed according to 2% x % x 100 = 1.17.
Therefore the Dirty Price is 103 4+ 1.17 = 104.17.
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Question.

Consider a US Treasury Note with semi-annual coupons, coupon at 2%, face value
of 100, expiry in 13 months and clean price of 98. Build the bond cash flows
schedule. For your convenience measure time in months and round to the second
digit.

Joo % 2/ x 05 = 5
¥ = =09333
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Heqing

Heqing

Heqing

Heqing

Heqing

Heqing


Answer.

Time (months) CF Amount
0 -Dirty Price ~ —98 —0.83 = —98.83
1 Cpn 2%><§><100:1
7 Cpn 2% x 5 x100 =1
13 Cpn+FV 2% x 3 x 100 + 100 = 101

Table 18: The coupon period is semi-annual, i.e. m = 2. The semi-annual coupon is 2% X % X
100 = 1. Last coupon has been paid 5 months ago. Accrued Interest is computed according to
2% x % x 2 x 100 = 0.83. Therefore the Dirty Price is 98 + 0.83 = 98.83.
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Counting Accrued Days |

@ There are several methods of counting the number of days of accrued
interest, although they are subject to variation

» Actual calendar days, including 29 February if it occurs in the period;
» 30-day European Method, i.e.:

* If D; = 31 set it to 30;

* If D, = 31 set it to 30;

* Number of days accrued

(D2 — Dl) + 30 x (M2 — Ml) + 360 x (Y2 — Yl).

» 30-day U.S. Method, i.e.

* If D; = 31 set it to 30;
* If Dy =31, and D; = 300r31 set D, = 30, otherwise leave as 31
* Number of days accrued

(Dg — D1)+30 X (M2 — M1)+360 X (Y2 — Yl).

and a coupon falling on last day of February it is treated as if it were on the
30th of February.
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Counting Accrued Days I

For US Treasury coupon securities and Italian BTPs and CCTs, the
convention is to use the actual number of days since the last coupon date
and the actual number of days between coupon payments, i.e. an
actual/actual ratio.

@ For US corporate, municipal, and agencies, the day count convention is
30/360: Each month is assumed to have 30 days and each year is assumed to
have 360 days.

For international securities, ISMA rule 251 specifies how accrued interest are
calculated for fixed and floating securities. All securities issued after 31
December 1998 use actual calendar days.

In general, it is also specified the method of rounding accrued interests, e.g.
4 digits for US Treasuries and 5 digits for Italian BTPs.
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Counting Accrued Days Il

ianluca Fusai (Cass )

Yield Curve Basics

Figure 18: Source: Bond Markets. Structures and Yield Calculation. by Patrick Brown, pages 8-9
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Example (Accrued Interest for BTP 15.01.2008 (IT00003413892))

Table 19: The Issuer considers all periods equal among each other (30/360). For example, for
fixed-rate securities issued on 1 January, with an annual coupon of 4%, the Issuer will pay a coupon
of 2% each semester, regardless of the actual duration of the semester. The accrued interest is
rounded to the 6th decimal per 1000 euros of capital, for the issuance of Government securities
through ordinary auctions and in exchange transactions. On the secondary market, however, the
convention of 5 decimals per 100 euros of capital applies. Therefore the accrued interest payable
will be 1.02717 per 100 euros.)

Accrued interest for BTP
Trade Date Tues Oct. 28th, 2003
Value date (3 Bus. Days) Oct. 31st, 2003
Last coupon date July 15th, 2003
Next coupon date: Jan. 1st, 2004.
days(15/07/2003; 31/10/2003) di 108
days(15/07/2003; 15/01/2004) do 184
Coupon Rate c 3.5
Coupons in the year m 2
Accrued Interest =X % (%) X % =1.1739




Example (Accrued Interests for US Bonds and Municipals)

o Consider a T-note whose last coupon payment was on March 1 and its next
coupon is six months later on September 1.
@ Suppose the bond is purchased with a settlement date of July 17.
The actual number of days between coupons is: July 17-July 31 = 14 days;
August = 31 days; September 1 = 1 days. Total = 46 days.
The actual number of days in the coupon period (sometimes referred to as
the basis) is 184 days.
o If the previous bond were a municipal or a corporate (and the day count
convention is 30/360), then
the days between coupon would be: Remainder of July = 13 days; August =
30 days; September 1 = 1 day. Total = 44 days.
The number of days in the coupon period would be 180.
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Market Quotations Coupon Bond

Bond Yields

TREASURY ISSUES

Tuesday, January 31, 2017

Prices and yields for on-the-run Treasurys, or the most recently issued U S. Treasury securities, for various maturities.

Dataasof 3pm. ET

Current Previous
Maturity Coupon price price Change Yield
02/2317 99.97 99.97 0.002 0472
05/04/17 99.87 99.87 unch. 0.518
08/a3NT 99.68 99.68 unch. 0836
01/04/18 99.30 89.28 0.016 0.764
01731719 1.1256 90.84 99.83 0.016 1.204
01115720 1.375 99.75 89.72 0.031 1.462
01731722 1875 99.84 99.70 0.148 1.908
01131724 2.250 100.02 89.80 0.219 2248
11/15/26 2.000 96.09 95.80 0.297 2.451

Figure 19: Quotes of US Bonds. Source: Wall Street Journal http://online.wsj.com/mdc/

public/page/2_3020-treasury.html
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Example
@ On Tuesday, Jan. 31, 2017 we buy the Nov. 15, 2026 US Bond.
For US bonds, there is 1 business day lag. So the Value Date is Feb, 1st, 2017
The Clean Price is 96.09.
The coupon rate on annual basis is 2%.

Coupon dates are on Nov. 15 and May 15, i.e. coupons are paid every six
months.

Last coupon has been paid on Nov. 15, 2016.

Next coupon will be paid on May. 15, 2016.

There are 181 actual days in the coupon period.

78 actual days are elapsed since last coupon payment.

60000 00CO0OCO

The Accrued Interest is

2% 78
- X 181 x 100 = 0.43009.

@ The Gross Price to be paid on Feb 1st is

96.09 + 0.4309 = 96.52009.
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Example (Case Study: Building the Payment Schedule of an US Bond)

Excel file: Fl_BasicYields.xlsm

Sheet: BondSchedule

A [ B [ ¢ T ol E F

1 US BOND: Bond Schedule
| 2 |[USBOND

3 |ISIN 912828024

4 |BOND INFORMATION
| & |Face Value 100
[ 6 |Annual coupon 2 | D M Y
| 7 |Maturity 15 November 2026 16 11 2026
| 8 |Basis 1

Number of coupons in the year 2

10 [MARKET INFORMATION
| 11 |Trade Date 02 February 2017
| 12 |Clean Price 9500000

13 BOND CALCULATOR | D M K7
| 14 |Value Date 03 February 2017 1 3 2 2017 _|=WORKDAY(B11.1))
| 15 |Payment of last coupon 15 November 2016 =COUPPCD{ValueDate B7,59.B8)
| 16 | Date of next coupon 15 May 2017 =COUPNCD(ValueDate B7 B9, B8)
[ 17 |Number of remaining coupons 20 n =COUPNUM(ValueDate B7.59.B8)
| 18 | Days since last coupon 80 =COUPDAYBS(ValueDate B7.69 B8)
| 19 |Days to next coupon 181 v =COUPDAYS(ValueDate 57 59.68)
| 20 |Accrued Interest 044139 =ROUND((B6/2)*B18/(B19).5)

21 |Market Gross Price 9544199 =B12+820

Figure 20: Bond Information
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Example (Case Study: (...continued))
Table 20: Payment Dates and Cash Flows

Cpn Nr Coupon Starts Payment Ends Adj. Starting Date Adj. Ending Days Tenor TT™ AF CF
1 Tu-Nov 15-2016 M-May 15-2017 Tu-Nov 15-2016 M-May 15-2017 181 101 0.5 1
2 M-May 15-2017 W-Nov 15-2017 M-May 15-2017 W-Nov 15-2017 184 285 0.5 1
3 W-Nov 15-2017 Tu-May 15-2018 W-Nov 15-2017 Tu-May 15-2018 181 466 0.5 1
4 Tu-May 15-2018 Th-Nov 15-2018 Tu-May 152018 Th-Nov 15-2018 184 650 05 1
5 Th-Nov 15-2018 W-May 15-2019 Th-Nov 15-2018 W-May 15-2019 181 831 0.5 1
6 W-May 15-2019 F-Nov 15-2019 W-May 15-2019 F-Nov 15-2019 184 1015 0.5 1
7 F-Nov 15-2019 F-May 15-2020 F-Nov 15-2019 F-May 15-2020 182 1197 0.5 1
8 F-May 15-2020 Su-Nov 15-2020 F-May 15-2020 F-Nov 13-2020 182 1379 0.5 1
9 Su-Nov 15-2020 Sa-May 15-2021 F-Nov 13-2020 F-May 14-2021 182 1561 0.5 1
10 Sa-May 15-2021 M-Nov 15-2021 F-May 14-2021 M-Nov 15-2021 185 1746 0.5 1
11 M-Nov 15-2021 Su-May 15-2022 M-Nov 15-2021 F-May 13-2022 179 1925 0.5 1
12 Su-May 15-2022 Tu-Nov 15-2022 F-May 13-2022 Tu-Nov 15-2022 186 2111 0.5 1
13 Tu-Nov 15-2022 M-May 15-2023 Tu-Nov 15-2022 M-May 15-2023 181 2292 0.5 1
14 M-May 15-2023 W-Nov 15-2023 M-May 15-2023 W-Nov 15-2023 184 2476 05 1
15 W-Nov 15-2023 W-May 15-2024 W-Nov 15-2023 W-May 15-2024 182 2658 0.5 1
16 W-May 15-2024 F-Nov 15-2024 W-May 15-2024 F-Nov 15-2024 184 2842 0.5 1
17 F-Nov 15-2024 Th-May 15-2025 F-Nov 15-2024 Th-May 15-2025 181 3023 0.5 1
18 Th-May 15-2025 Sa-Nov 15-2025 Th-May 15-2025 F-Nov 14-2025 183 3206 0.5 1
19 Sa-Nov 15-2025 F-May 15-2026 F-Nov 14-2025 F-May 15-2026 182 3388 0.5 1
20 F-May 15-2026 Su-Nov 15-2026 F-May 15-2026 F-Nov 13-2026 182 3570 0.5 101
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Example (Case Study: (...continued))

120
100
80
60
40
20

0 = = = m e e e e e e e - -
T R R N WA SRR % o
S & T AP A I g e B g L SR G P P
R SRR AR SR LGl At L g o

H CASH FLOW

Figure 21: Bond Cash Flows
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Pricing a Coupon Bond
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Fact (Pricing a Coupon Bond)

@ The coupon bond can be seen as a strip of zero-coupon bonds, so by the law
of unique price, the bond price (invoice price) is the sum of discounted values
cash flows

n
B(c tity, .itn) = Y ey | eP (£, 1)+ 1% P(t,ts). (4)
i=1

where

c is the coupon (on an annual basis);

n is the number of remaining coupons;

t; is the payment date of the i-th coupon;

At ..t Is the length (in years, according to a given day count convention) of
the i-th coupon period.

@ The above theoretical price is an estimate of the gross (invoice) price.

o If you are interested in the clean price you have to subtract to the above price
the accrued interest.

@ This evaluation requires the knowledge of the term structure of discount

r B — 7 NS L




Example (1. Pricing the coupon bond relative to zeroes)

Let the price of three zero-coupon bonds with maturities of 1-3 years
P(0,1) = 0.9346, P(0,2) = 0.8573, P(0,3) = 0.7722.

The equilibrium price B of a 3-year, 8% annual coupon bond with face value of
100 is 97.73:

B = (0.9346 + 0.8573 + 0.7722) x 8 + 0.7722 x 100 = 97.7316.
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Example (2. Building an arbitrage)

If the 8% bond trades at 95, we can do the following arbitrage:

@ Buy the bond for 95.

@ Consider three stripped zero coupons and sell them:
1-year zero with Face Value of 8: Selling Price = 8 x 0.9346 = 7.4766
2-year zero with Face Value of 8: Selling Price = 8 x 0.8573 = 6.8587
3-year zero with Face Value of 108: Selling Price = 108 x 0.7722 = 83.3958
Sale of strip bonds = 97.73.
Risk-free profit = 97.73 — 95 = 2.73.

Given this risk-free opportunity, arbitrageurs would implement this strategy of
buying and stripping the bond until the price of the coupon bond was bid up
to equal its equilibrium price of 97.73.

(]

At that price, the arbitrage would disappear.
Viceversa, if the bond trades above 97.73.
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Recovering Discount factors from bond prices

Leot kPP

@ An important procedure in the marketplace is to recover the term structure
of discount factors from bond having different maturities.

@ In a simplified setup, with bonds expiring at equally space dates, this consists
in solving forward a linear system of equations.

@ In general, the procedure is more involved.

@ This will be discussed in the lecture on Bootstrapping.
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Par Coupon Rate

o Consider the bond pricing formula

n
B(c tity,...ta) = Y cay P () +1x P(t,tn). (5)
i=1

=

@ Choose the coupon rate ¢ so that B =1, i.e.

n
1= cay . P(t,t)+1xP(t ta). (6)
=1

@ We have

1—P(t tn)
- .
.21 ‘xtiflxtiP (t, t,')
i=

(7)

Ch =

This coupon value is called par coupon rate or swap rate.
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Example (Building the Par Coupon Curve)

@ Let us suppose we have the term structure of annually compounded spot
rates as in Table below.

Term 1 2 3 4 5
Spot Rate 2.3840% 2.8700% 3.2300% 3.5200% 3.7500%

We aim to build the par-coupon curve.
@ Step 1: Determine Discount factors according to the formula
P(t, T)=1+Y(t, 7)) (T-1,
Term 1 2 3 4 5

Spot Rate  2.3840% 2.8700% 3.2300% 3.5200% 3.7500%
DF 0.9767 0.9450 0.9090 0.8708 0.8319



Heqing


Example

—
@ Step 3: For each date, compute the Annuit@;_l,;P(t, Ti)
=1

Term 3 5
Spot Rate 2.8700% 3.2300% 3.7500%
Tenor 1
DF 0.9450 0.9090 0.8319
Annuity 1.9217 2.8307 45334
o Step 4 Apply formula 7
Term 3 5
Spot Rate 2.8700% 3.2300% 3.7500%
Tenor 1
DF 0.9450 0.9090 0.8319
Annuity 1.9217 2.8307 45334
Par Yield 2.8631% 3.2134% 3.7085%
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Figure 22: Term structures of spot and par rates.
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From Par Rates to Discount Factors

@ Consider the formula 7 and take n =1, i.e.
a=1-P(t T1))/(1+agn,nP(t T1)).
@ Solve for P(t, T1). We have
1
Pt TH) = ———.
( ) 1+ C1&T,, Ty

1-P(t,Tp)
l+agy 1y P(t, T1)+ar, 1, P(t. T2)

o Taken=2,ie. o= , and solve for P(t, T»):

P(t T ) _ 1— C20‘T0,T1P(tv Tl)
2 1+ coar,T, '

@ In general, we have

1—co Y tar  7.P(t,T))
P(t, Tn) = Ll :
( 1 n) 1+Cn06Tn_1an (8)

i.e. given the term structure of par rates we can recover the term structure of
discount factors.
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Example

o Step 1: Get P(0,1):

where

and

Years 1 2 3 4
Par 2% 2.20% 2.40% 2.50%
Tenor 1 1 1 1
DF 98.04%
Annuity | 98.04%

2.70%

1

_ o/ __
P(0,1) = 98.04% = 10—

A(1) = 1-98.04%.
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Example
o Step 2 Get P(0,2):

Years 1 2 3 4 5
Par 2% 2.20% 2.40% 250% 2.70%
Tenor 1 1 1 1 1

DF 98.04%  95.74%
Annuity | 98.04% 193.78%

where
1—0.9804

_ o/ __
P(0.2) = 95.74% = 0

and

A(2) = A(1) +1-95.74% = 1.9378.
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Example
o Step 3 Get P(0, 3):

5

2.70%

1

Years 1 2 3 4
Par 2% 2.20% 2.40% 2.50%
Tenor 1 1 1 1
DF 08.04%  95.74% 03.11%
Annuity | 98.04% 193.78% 286.89%
where 1— 2.40% - 1.9378
P(0,3) =93.11% = — =
(0,3) =93.11% 1124% 1
and

A(3) = A(2) +1-93.11% = 2.8689.
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Example
o Step 4 Get P(0,4) — P(0,5):

Years 1 2 3 4 5
Par 2% 2.20% 2.40% 2.50% 2.70%
Tenor 1 1 1 1 1

DF 98.04% 95.74%  93.11%  90.56%  87.45%
Annuity 98.04% 193.78% 286.89% 377.45% 464.90%
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Yield to maturity

@ It is the rate that equates the price of the bond, B, to the PV of the bond'’s
cash flow (CF); it is the internal rate of return, IRR, of a bond. It can be
computed according to different conventions.

@ In the US market, it is convention to use semi-annual compounding and
measuring time in semesters.

@ More details in the Appendix at page 171.
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YTM

@ It is the rate that equates the price of the bond, B, to the PV of the bond's
cash flow (CF); it is the internal rate of return, IRR, of a bond. It can be
computed according to different conventions.

@ The intersection point between the horizontal line (at the level given by the
bond market price) and the curved line (representing the theoretical coupon
bond price for different values of y) gives the yield to maturity (in figure
approximately equal to 6.24%).

N

Figure 23: Inverse relationship between yield to maturity and bond price (red curve). The market
bond price is the black line. The intersection point returns the bond yield to maturity on the
horizontal axis
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Example (YTM using annual compounding) v

Let us consider the following cash flows on a coupon bond with semi-annual
coupons and coupon rate of 4%.

Time (years) 0 05 1
CF -98 2 102

The ytm solves the equation

2 102

08 = +
(14+y)05  (1+y)?t

and setting x = 1/(1 + y)0'5, the equation becomes
98 = 2x + 102x2,

equation having meaningful solution if x = 0.9704412, so that

1

= _1=16.1846%.
(0.9704412)2 %

y
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Example

Let us consider a bond that quotes at 99, expiring in 13 months and having
semi-annual coupons and coupon rate of 6%. Coupon Dates will be in 1, 7 and 13
months. The Accrued Interest is 0.06/2 x 5/6 x 100 = 2.5. The Gross Price is
99 + 2.5. The bond cash flows are

Time 0 Im 7m 13m
CF -101.5 3 3 103

The ytm solves the equation

1015= _ 4 S S 10313.
A+y)z (1+4+y)z (1+y)r

This equation cannot be solved in closed form and needs some numerical
procedure (such as bisection or Newton method, implemented in Matlab and
Excel via fzero and the Solver). The ytm is 7.0887%.
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Example (YTM using semi-annual compounding) \ ~

Let us consider the following cash flows on a coupon bond with semi-annual
coupons and coupon rate of 4%. If we adopt the semi-annual compounding
convention, y is the annual ytm and y /2 the semi-annual one and we measure
time in semesters.

Time (semesters) 0 1 2
CF -98 2 102

The ytm solves the equation
2 102

98 = —
(1+%)° (1+%)

and setting x = 1/(1 + %)1 the equation becomes 98 = 2x + 102X2, It has as a
meaningful solution x = 0.9704412, so that

1 1
—2(=-1)=2(—— " —1) =6.001827%.
Y <x ) ((0.9704412) ) IR
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Meaning of the yield to maturity

@ Yield is just a convenient way of expressing price and it is taken as a
synthetic measure of bond'’s return.

@ However, this interpretation rests on the assumption, absolutely flawed, that:

1. coupons will be reinvested at the initial YTM of the bond. Instead, the
uncertainty of the future reinvestment rates makes uncertain the bond’s
return.

2. the bond is held to maturity.
@ It is also a flawed concept because
a. it applies the same discount rate to different cash flows of the same bond;

b. it applies different discount rates to cash flows falling on the same date, but
belonging to different bonds.

@ Bonds with the same maturity will have different yields if their coupons differ
and if the term structure is not flat. If one bond yields more than another it
does not mean that it is of better value.

@ It is actually inaccurate to compare bonds using the YTM.
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Yield Curves

A yield curve is a graph of yield y against maturity (in years).

Asked Yield Yield Term Structure of Italian YTM (Value Date:

4/5/2016)

Yield Term Structure of Bund YTM (Value Date:

Nominal Spread Curve (ITA-GER)
4/5/2016)

Figure 24: Yield Curves for US, ITA and GER. See Excel file FI_BasicYields.xIxm, Sheet: YTMUS-
DBond, YTMITABond, YTMGERBond.
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Table 21: US Daily Treasury Yield Curve Rates. https://www.treasury.gov/resource-center/

data-chart-center/interest-rates/Pages/TextView.aspx?data=yield

Date

12/02/19
12/03/19
12/04/19
12/05/19
12/06/19
12/09/19
12/10/19
12/11/19
12/12/19
12/13/19
12/16/19
12/17/19
12/18/19

1
Mo
1.6
1.56
1.59
1.52
1.52
1.54
1.53
1.54
1.57
1.55
1.57
1.56
1.56

2
Mo
1.58
1.54
1.54
1.56
1.55
1.54
1.55
1.56
1.57
1.57
1.57
1.56
1.57

3
Mo
1.6
1.57
1.5
1.54
1.53
1.54
1.56
1.57
1.56
1.57
1.57
1.56
1.56

6
Mo
1.62
1.57
1.56
1.55
1.56
1.58
1.57
1.58
1.57
1.56
1.58
1.58
1.58

1
Yr
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.5
1.5
1.5
1.5

2
Yr
1.6
1.5
1.6
1.6
1.6
1.6
1.7
1.6
1.7
1.6
1.7
1.6
1.6

3
Yr
1.6
15
1.6
1.6
1.6
1.6
1.7
1.6
1.7
1.6
1.7
1.7
1.7

5
Yr
1.7
15
1.6
1.6
1.7
1.7
1.7
1.6
1.7
1.7
1.7
1.7
1.7

7
Yr
1.8
1.7
1.7
1.7
1.8
1.8
1.8
1.7
1.8
1.8
1.8
1.8
1.9

10

Yr

1.83
1.72
1.77

1.8

1.84
1.83
1.85
1.79

1.82
1.89
1.89
1.92

20

Yr

2.15
2.03
2.08
2.11
2.14
2.13
2.12
2.08
2.18
2.11
2.17
2.18
2.22

30

Yr

2.28
2.17
2.22
2.24
2.29
2.27
2.26
2.23
2.32
2.26

2.3

2.31
2.35


https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield

Conclusions

We have reviewed

@ Main Compounding conventions
@ Term Structure of discount factors
@ Zero-coupon

@ Coupon bond and pricing conventions
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US Treasury Bills

@ TBills are US Treasury securities issued with maturities of 4, 13, 26 and 52
weeks.

@ They do not pay coupons and are traded on the basis of a discount to par.
The discount is sometimes referred to as a discount yield and should not be
confused with a bond vyield.

@ Discount rates are quoted at an annual rate based on 360-day year for US
and 365-day year for sterling instruments.

Fact (T-Bill quotations)

The percentage price paid for a money market instrument quoted at a discount
rate d is: .
P=100x [1—— Xa
( 100 ”)
where P is the percentage price, d the discount rate %, a; T the fraction of a year
from settlement to redemption (ACT/360 or ACT/365).
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Term Issue
Date

91.DAY 02-03-2003
182-DAY 02-03-20035
28-DAY 01-27-2003
91-DAY 01-27-2003
182-DAY 01-27-20035
28-DAY 01-20-2003
91-DAY 01-20-2003
182-DAY 01-20-20035
3-DAY 01-13-2005
28-DAY 01-13-2003

Maturity Discount Investment
Rate %  Rate %

Date

03-05-2005
08-04-2005
02-24-2005
04-28-2005
07-28-2005
02-17-2003
04-21-2005
07-21-2005
01-18-2005
02-10-2003

Figure 25: UST-Bills Auction Results.
annceresult/annceresult.htm
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Source:

2475
2710
2030
2320
2410
1910
2.360
2435
2040
1920
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2545
2754
20461
2364
2652
1939
2407
2708
2069
201

Price
Per CUSIP
$100

99374375 912795514
95 629944 012795V K4
99842111 912795583
99413556 P12T953L4
95 630500 912795V ]T
99351444 912795340
99.403444 9127955K3
95 667861 912795V HI
90971667 912795TGE
99.346000 912793RZ4
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Example (US T-Bill 91279SM4)

Issue Date Feb. 2nd, 2005
Value Date Feb 3rd, 2005
Maturity Date May 5th, 2005

~

Time to maturity (ACT/360) days (t, T) 91/360
Discount rate d 21%7705
Traded Price P(t,T) 100 x gl — 230 % %) =99.374
100—-9

.374375 365 __ 2.5252%

Investment Rate —0037137t— X o1
99,374
Equiv. Yield % x 39% = 2.49058%

The Investment Rate is computed according to the convention ACT /365 to
compare the return on TB to the one in the bond market

R d 365

= ———————— X ——.
1—dx%% 360

Similarly, to make it comparable to money-market rates, we can also compute the
so called Money Market Equivalent Yield

d
EY = ———.
ACT
1—dx 360
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Trade

April 29th, 2016

Maturity Days Bid Ask Price Maturity Days Bid Ask Price

05/05/2016 6 0103%  0.093%  0.999985

12/05/2016 13 0143%  0.133% 0999952 | 01/09/2016 125  0260%  0.250%  0.999132
19/05/2016 20 0158%  0.148% 0009918 | 08/09/2016 132  0248%  0.238%  0.099127
26/05/2016 27 0165%  0.155% 0009884 | 15/09/2016 130  0275%  0.265%  0.098977
02/06/2016 34 0.150%  0.140% 0099868 | 22/09/2016 146  0.208%  0.288%  0.998832
09/06/2016 41 0.150%  0.140% 0099841 | 20/09/2016 153  0.303%  0.293%  0.998755
16/06/2016 48 0.173%  0.163% 0099783 | 06/10/2016 160  0.328%  0.318%  0.098587
23/06/2016 55 0.190%  0.180% 0099725 | 13/10/2016 167  0.353%  0.343%  0.098409
30/06/2016 62 0.190%  0.180%  0.99969 | 20/10/2016 174  0375%  0.365%  0.098236
07/07/2016 69 0193%  0.183%  0.999649 | 27/10/2016 181  0385%  0.375%  0.998115
14/07/2016 76 0198%  0.188% 099603 | 10/11/2016 105  0343%  0.333%  0.998196
21/07/2016 83 0223%  0.213% 0999500 | 08/12/2016 ~ 223  0343%  0.333%  0.997937
28/07/2016 9% 0228%  0.218% 0009455 | 05/01/2017 251  0.403%  0393%  0.99726
04/08/2016 o7 0243%  0.233% 0009372 | 02/02/2017 279  0.450%  0.440%  0.99659
11/08/2016 104 0245%  0.235% 0009321 | 02/03/2017 307  0485%  0.475%  0.095049
18/08/2016 111 0255%  0.245% 0009245 | 30/03/2017 335  0510%  0.500%  0.095347
25/08/2016 118 0253%  0.243% 0009204 | 27/04/2017 363  0553%  0.543%  0.094525

Table 22: US short term government curve (Secondary Market). Quotes avail-

able on the

Wall  Street

Journal

webpage

at http://online.wsj.com/mdc/public/

page/2_3020-treasury.html#treasuryB and https://www.treasury.gov/resource-center/
data-chart-center/interest-rates/Pages/TextView.aspx7data=billrates

For greater details on the pricing of T-Bills: https://developers.opengamma.

com/quantitative-research/Bill-Pricing-OpenGamma.pdf
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Treasury Bill Rate and LIBOR rate

MM48 USD T-BILLS CURVE Last Mid YTM
1 ®MM21 USD LIBOR FIXINGS CURVE Last Mid YTM
<

< Spread
1 ®MM21 Mid YTM - MM48 Mid YTM (Last)

1D M 45D 2M M M - - 1y
Tenor
Copyrightg 2017 Bloomberg Finance L.P. 27-Jan-2017 16:14:23
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Historical Spread LIBOR Rate - TB Rate
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Figure 26: Spread 3m US LIBOR vs 3m T-Bill Equivalent Yield.
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Rolls Dates for Odd Coupon Bonds |

@ Sometimes the rolls dates are not straightforward.

@ What about the roll dates for a bond that is issued on 1-Apr-2016 and
matures on 1-June-20267

@ This case refers to the so called Odd Coupons

@ At first, we need to determine when the stub or odd coupon occurs.

Normally, the stub is at the front and then roll dates are determined from and
including the maturity date;
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Rolls Dates for Odd Coupon Bonds Il
Example (Odd Coupon at the front)

Issue Date 01/04/2016

Maturity Date 01/06,/2019

First Coupon Date 01/06/2016

Frequency 2

Coupon 5
Times  01/06/2016 01/12/2016 --- ---  01/06/2019
Days 61 183 182 183 182

Cash Flow 25 25 cee e 102.5
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Rolls Dates for Odd Coupon Bonds Ill

@ Alternatively, a bond has an odd last coupon, if the final payment for the
bond occurs on a date that is out of synch with the rest of the coupon dates.

Example (Odd Coupon at the end)
Issue Date 01/04/2016
Maturity Date 01,/06/2019
Last Coupon Date 01/10/2018
Frequency 2
Coupon 5
Times  01/10/2016 --- 01/10/2018 01/04/2019 01/06/2019
Days 183 000 183 182 61
Coupons 2.5 e 2.5 0 102.5
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Yield to Maturity
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Enter all values and hit <GO>
! Settings

3 Graphs

1 Yield & Spread \RNIELE
T2 11/15/26 ( 912828024 )

# Spreads Yield Calculations

1) G-Sprd [IEX | Street Convention

7) 1-Sprd [N
Basis

EER | Equiv --,\,
' EEH

4 Pricing

- Yield and Spread Analysis
5 Description  f) Custom
Risk
Workout
M.Dur

A on 100M
Benchmark Risk
Risk Hedge
Proceeds Hedge
Invoice

dl Face
Principal

Total (USD)

1.506970

RAUSTFalis 61 2 9777 8600 BraZil 5511 2395 9000 EUrope 4 20 7330 7500 GRrMENY 43 69 9304 1210 HOMg Kong 852 2977 6000

Japan 81 3 3201 8900

Singapore 65 6212 1000

Copyright 2017 Eloombers Finance L.F.
SN £18055 G334-331-0 01-Feb—17 13:31:35 GMT GMT+0:00

U.s. 1212 313 2000

Figure 27: Bllomberg page with ytm computation
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Computing the Yield to maturity: True Yield |

True Yield

@ True yields are computed based on a cash flow stream that has been adjusted
for the actual payment dates.

@ That is, each scheduled coupon payment is discounted back from the actual
payment date based on the selected business day convention and the relevant
holiday schedule provided by the user.

n

c/m 1

B(c tity, ... tn) = — + —,
( n) = (1+y)t, t (1+y)tn t

@ The year fractions t; — t are measured in years and adjustments for weekend
and holidays are taken in account.

@ It is applicable to bonds with no call or put provisions.
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Computing the Yield to maturity: True Yield Il

I F I G

| c [ o [ ¢
Yield to maturity for a BTP

I & B
1
2
3
4 Iz A
| 5 |Face Vale 100
[ & |Annval coupen 275
[ 7_Inaturity 01/0212008
& |aasis 2]
Mumber of coupans
in the year 2
3
10 R ATy -
| 11 Trade Cate 28/10/2003
|12 |Clean Price 03 TE000
130 UL c
[14 [Value Cate 31710/2003
Fayment of last
|15 |coupen 01082003
|16 |Date of next coupon 0170272004
Mumber of &
| 17 |remaining coupens 2
Days since last a1
| 18 |coupen
i (Days to next coupon 184
| 20 |accrued Interest
Market Grass Price
100440022

Gianluca Fusai (Ca:

=WCRKDAY(B11:3,3J525,5382)  Cell B14 has been named ValueDate

=COUPPCD(ValueDate,B7 B EE)
=COUPNCD{ValueDate:ET B0;B3)

=COUPNUMValueDate BT, B9 BE)
=COUPDAYBSValueDate BT, BS BE)
=COUPDAYSValeDate:B7,88,88)

=ROUND((B&/2)" B18IE191S5)
=B12+820

=5UMIG26. OFFSET(5GS2%617,0))
=ABS(B24-B21)
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Computing the Yield to maturity: True Yield IlI

B | [+ [ © E F G
21 [Cash Flows Details
| 22 | Coupon Dates Adjusted Days Semiannual Face Value Fresent Value
23 Coupon Dates Cou _
| 24|  Sunday. 1 February 2004 0240272004 a4 1375 1] 1.36500
| 25 | Sunday. 1 August 2004 02/08/2004 278 1.375 Q 1.24586
| 26| Tuesday, 1 February 2005 01022005 459 1375 Q 1.32687
27 | Monday, 1 August 2005 01082005 640 1.375 1] 1.30835
| 28| Wednesday. 1 Fabruary 2006 01022006 824 1375 100 95.09393

Figure 28: Computing the true yield to maturity for an Italian BTP.
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Computing the Yield to maturity: US Street Yield |

US Street Yield
@ The convention used by market participants in the U.S. to value treasuries.

@ Based on an accrual basis of Actual/Actual and assumes that yields are
compounded semi-annually, even in fractional first periods (compare with the
U.S. Treasury method).

o If the bond is in its final coupon period, then the US Street yield is computed
using the US market final period pricing convention (see money market yield).
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Computing the Yield to maturity: US Street Yield Il

It is applicable to bonds with:

Fixed coupon payments that do not vary as a function of the actual dates
between payments (with the possible exception of the first and last
payments).

No allowance for the precise timing of the cash flows. That is, bonds are
conventionally priced by assuming that each coupon payment falls on the
nominal payment date with no adjustment for holidays or weekends.

A single redemption date and a fixed redemption value (bullet bonds).
No call or put provisions.
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Computing the Yield to maturity: US Street Yield Il
US Treasury Yield (ISMA formula)

@ The convention used by the U.S. Treasury to value bonds.

@ Based on an accrual basis of Act/Act and assumes that yields are
compounded semi-annually in all but the fractional first period.

o If the bond is in its final coupon period, then the US Street yield is computed
using the US market final period pricing convention (see money market yield).

Same caveats as in the previous case.

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 146 /171



ISMA formula for the YTM (US Street yield) |

The following bond pricing method is based on the ISMA redemption yield
formula:

2 c/m 1
B(C't;tl"“’ ; 1_|_)/2 ti— it (1+y72)t2n_t'

where n is the number of remaining semi-annual coupons and the times t; — t are
measured in semesters.
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ISMA formula for the YTM (US Street yield) I

The above formula can be simplified in the following way:

@ Define

n = Numbers of remaining coupons
u = Days Since Last Coupon
v = Days Until Next Coupon
S v
u+v
_ 1
A -

then y solves

B(c, t;ty,.... tn)

1— n—1
o)
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ISMA formula for the YTM (US Street yield) Il

@ y» is called the bond-equivalent yield.

@ The effective rate (comparable to the true yield) is

¥2\2
1 —)—1.
(+2

@ This formula is also known as Brass-Fangmeyer method (German Bunds).
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ICMA formula for the YTM (US Street yield)

The following bond pricing method is based on the ISMA redemption yield
formula:

1
_|_
S e R

TB(y;t t1,...tn) =

and where the time t; — t are measured in semesters. Using the previous notation,
then y solves

. . 1 c 1—4)”71 c 1
Bttt = g (P Ty ot

(1+y—22)2—1.

This formula is also known as Moosmuller method (German Bunds).

The effective rate is
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UsS BOND

ISIN 912828U24
BOND INFORMATION
Face Value 100
Annual coupon 2.875
Maturity 15/11/2046
Basis 1
Number of coupons in the year 2
MARKET INFORMATION
Ee Date 01/02/2017
Clean Price 96.00780
BOND CALCULATOR

Value Date 02/02/2017
Payment of last coupon 15/11/2016
Date of next coupon 15/05/2017
Number of remaining coupons 60
Days since last coupon 79
Days fo next coupon 181
Accrued Interest 0.62742
Market Gross Price 96.63522

YIELD CALCULATOR

US Street ISMA Method

Bond Equivalent Yield 3.0703% 3.0702%
[ 0.98488 0.98488
w 0.69615 0.69615
Annuity 38.62585 38.62646
Theoretical Pricevin t1 97.66557 97.66792
Theorefical Pricevin t 96.63522 96.63522
Pricing Error 0.0000 0.0000
Effective Yield 3.0939% 3.0937%

Figure 29:

=WORKDAY(B11;1;)
=COUPPCD(ValueDate;B7;B89;88)
=COUPNCD (ValueDate;B7;B9;B8)
=COUPNUM(ValueDate;B7;B9;88)
=COUPDAYBS(ValueDate;B7;B9;88)
=COUPDAYS(ValueDate;B7;B9;B8)
=ROUND((B6/2)*B18/(B19);5)
=B12+B20

=1/(1+B24/$B39)
=$B$19/($B$19+3B$18)
=B25*(1-B25*(B17-1))/(1-B25)
=(B6/B9)* (1+B27)+B5*B25"(B17-1)
=B28"B25"B26

=ABS(B29-B21)
=(1+B24/$B$2)*$BSo-1

Computing yield to maturity according to different conventions.




Example (1. YTM for a Treasury Bond)

Trade Date: 28-Apr-2016.

Settlement Date: 29-Apr-2016.

30-Nov-2017 Treasury: Ask Price 99.8438, Coupon 0.625, Quoted yield: 0.724%.
Coupon Dates: 30-Nov and 30-May.

Days in the coupon Period: 183

Days since last coupon (u): 151

Days to next coupon (v): 32

Number of remaining coupons (n): 4

Accrued Interest Oleoss]
5 183~ 0.2579

@ Invoice Price
99.8438 + 0.2579 = 100.1017.




Example (2. YTM for a Treasury Bond (ISMA Method))

@ We have
v 32

utv 151132

= 0.17486.

Discount factor (semi-annual)

1

@ Annuity

1—¢"t
‘Pﬁ = 2.97841.

@ Discount factor for short period

" = 0.99639°1748 — 0.99937.

@ Present value of coupon payments

0.625
2

X (2.97841 + 1) x 0.99937 = 1.24247.

@ Present value of principal
100 x ¢"~ 1" = 98.85933

Theoretical Price
1.24247 + 98.85933 = 100.1018.




Nominal Yield Spread |

@ The yield spread displays the yields of coupon-bearing bonds as function
of time to maturity. The absolute yield spread between any two bond
issues, bond X and bond Y, is computed as follows:

yield spread = yield on bondy — yield on bondy .

@ This traditional yield spread is also known as the nominal spread.
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Nominal Yield Spread Il

Table 23: Nominal Spreads Germany-Italy on 30-Apr-2016

Years Days ITA GER Nominal Spread

1 365 -0.21% -0.65% 0.44%
2 730  -0.05% -0.54% 0.49%
3 1095 0.07% -0.55% 0.62%
4 1460 0.22% -0.51% 0.72%
5 1825 0.47% -0.40% 0.87%
6 2190 0.69% -0.34% 1.03%
7 2555  0.88% -0.20% 1.08%
8 2920 1.16% -0.18% 1.33%
9 3285 1.31% -0.07% 1.38%
10 3650 1.44%  0.04% 1.40%
15 5475 1.94%  0.82% 1.12%
20 7300 2.23%  0.92% 1.32%
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Nominal Yield Spread Il

Nominal Spread Curve (ITA-GER)

1.609
1.40%
1.209
1.00%
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0.60%
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0.20%
0.00%
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Days

Nominal Spread

Figure 30: Nominal Spread Italy-Germany
@ In practice, this plot is informative but of very limited practical use.

@ There is no reason to expect the credit spread to be the same regardless of
when the cash flow is received.

ianluca Fusai (Cass ) Yield Curve Basics SMM269 156 /171



Bond Portfolio Yield

@ The yield for a portfolio of bonds is found by solving the rate that will make
the present value of the portfolio’s cash flows equal to the market value of
the portfolio.

@ For example, a portfolio consisting of a two-year, 5% annual coupon bond
priced at par (100) and a three-year, 10% annual coupon bond priced at
107.87 to yield 7% (YTM) would generate a three-year cash flow of $15,
$115, and $110 and would have a portfolio market value of $207.87.

@ The rate that equates this portfolio’s cash flow to its portfolio value is 6.2%.
Indeed it solves the equation

15 115 110

207.87 = + + .
(I4+y)t " (1+y)2 (1+y)3

@ The bond portfolio yield is not the weighted average of the YTM of the
bonds comprising the portfolio. In this example, the weighted average (Rp) is

6.04% = (0.05 x 100/207.87 + 0.07 x 107.87/207.87).
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Simple compounded spot rates: L(t, T)

e L(t, T) is the constant rate at which an investment of P (¢, T) units at time
t accrues to yield a unit amount at maturity T, given that the amount
accrued is proportional to the investment length.

o L(t, T) is then the solution of:
P(t, T)(L+L(t, T)aeT) =1,
We have:
Simple Compounding/Discounting

@ Given the discount factor, we can compute the simple compounded interest

rate
1 [(1-P(t, T)
L(t, T)= e ( Pt T) >

@ Viceversa, given L (t, T), the zcb price is

1
P(6T)= T+ L(t, T)agt

.
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Annualy compounded spot rates: Y (t, T)

e Y(t, T) is the constant rate at which an investment of P (¢, T) units at time

t accrues to yield a unit amount at maturity T, given that the interest
obtained is reinvested once a year.
@ Y (t, T) is then the solution of:
P(t, T)(L+Y(t, T))"T =1,

We have:
Annualy Compounding/Discounting

@ Given the discount factor, we can compute the annually compounded

1
Y(t,T)=|—=——
"= (7
@ Viceversa, given Y (t, T), we can compute the zcb price:

1
P(6T)= 1+ Y (t 1))

interest rate )
& T
) 1

SMM269
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Continuously compounded spot rate: R (t, T)

@ R(t, T) is the constant rate at which an investment of P (t, T) units at time
t accrues continuously to yield a unit amount at maturity T.

@ R(t, T) is then the solution of:
P(t, T)eRETaeT — 1
We have:

Continuous Compounding/Discounting

@ Given the discount factor, we can compute the continuously compounded

interest rate e -
t
R(t,T)= _InP(,T)
&t T

@ Viceversa, given the continously interest rate, we can compute the zcb price
in terms of R (¢, T) :

P(t, T)=e RET)aeT
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A strange animal: the instantaneous interest rate r (t)

@ The instantaneous interest rate, or short rate, is the return on a spot
deposit of infinitesimal lenght.

o r(t) is defined as the limit of R (¢, T) (orof L(¢t, T))as T — t:

F(t) = lim R(t,T) = —a'%(;'” - J

@ Remarks:

@ It is a convenient quantity to use for modelling purposes: the math is simpler.
For this reason, the first term structure models (Vasicek and CIR) were short
rate models, i.e. models assigning the dynamics of r (t).

@ Note that r (t) does not depend on the maturity T any longer.

© r (t) represents just a point on the term structure of spot rates: it is the
intercept on the vertical axis.

@ r(t) does not exist as traded quantity in the market.
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r(t)and P(t, T)

@ In general, we cannot recover the whole zero-rate curve by knowing the short
rate at time t only.

Indeed, given the discount curve we can obtain r(t) according to the previous
formula

P(t, T), VT = r(t).
Viceversa, given the short rate we cannot recover the discount curve

r(t) = P(tT).

@ However, assuming a future deterministic path for r () i.e. if we know the
entire future path r(s), t <s < T, then

P(t,T)=e Ji r5)ds,

In general, outside the deterministic world, this relationship is not true.

In order to understand the relatioship between P and r, we need to remember
some basic fact on no-arbitrage pricing. In particular, we need to remember
the concept of money market account, risk-neutral expectation and

martingale.
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f(t, T) and r(t)

@ Let us consider r (t). By definition:

r(t) = _’I_imtR(t, T)=lm ——— =f(t,t)

ftT f(t,s)ds
T—t T —t

i.e. the instantaneous interest rate is a particular forward rate.
@ The knowledge of r (t) does not say anything about f (¢, T), T > t.
@ Only if we known the future path of r(.), we can recover f (¢, T) :

.
f(t,T):—alngs_t'T):aft arT(s)dszr(T) J

@ Then, under a deterministic evolution, the instantaneous interest
rate at time T is equal to the current instantaneous forward rate 7 (t, T).
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Continuously compounded forward rates

Continuously Compounded Forward Rate

@ With continuously compounded rates, we define F (t, T1, Tg) such as:

MeF(t,Tl,TQ)(TrH) =1

P (t, Tl)
@ Therefore the Continuously Compounded Forward Rate is

InP(t, To) —InP (t, T;
F(t. T T2) = - ( 72'2—T1 : 1)'

@ Assuming c.c., express F (t, T1, T2) in terms of spot rates and show that:

Ty = (o ORGT)-(R-0RG.T)

@ Repeat using simple convention.
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@ Discount rates are used in the T-bill spot and futures markets.

@ The discount rate is not a rate of return, because it is calculated as a
percentage of the final value of the bill, not the initial investment.

Discount rate
The discount rate d (t, T) is defined by:

d(t, T)= (1-P(t, T)),

X, T
where «; 1 follows the day-count convention ACT /360 (US TBills) or ACT /365

(UK sterling).
We can express also the zcb price in terms of d (¢, T) :

P(t, T) = 1—d(t, T)Dét"r
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Bond Equivalent Yield or Investment Rate

@ The measure that seeks to make the Treasury bill quote comparable to
coupon Treasuries is called the bond-equivalent yield.

@ It is computed according to the convention ACT /365:

365
BEY = ———— X —.
R
Example (Computing the Investment Rate)
2.475
365
100 0
——a——— X — = 2.5252%.
2475 ., 01
1- 500 X 360 300

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 166 /171



CD equivalent yield

@ The CD equivalent yield (also called the money market equivalent yield)
makes the quoted yield on a Treasury bill more comparable to yield quotations
on other money market instruments that pay interest on a 360-day basis:

d

ACT *
1—dx 260

CDEY =

Example
Given the 2.475% T-Bill yield, the CD equivalent yield is

2.475

1 — 500" % 360
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Rate of Return: Common Measures

o Current Yield: is the ratio of its annual coupon to its closing price.

cY_ Annual Coupon
N B(c,t)

@ Coupon Rate: is the contractual rate the issuer agrees to pay each period.
It is expressed as a proportion of the annual coupon payment to the bond's

face value:
Annual Coupon

F
o Yield to Maturity: is the rate that equates the price of the bond, B, to the
PV of the bond's cash flow (CF); it is the internal rate of return, IRR, of a
bond. It can be computed according to different conventions.

CR
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JGB Yield

@ The yield convention used by Japanese Government Bonds.
@ Yield is based on the following simple interest formula:

e _C+(100—(B—A/))/T
YtMsimple = (B —A/)/lOO

where T is the number of days from settle to maturity divided by 365.

@ If there is more than one year to maturity, the numerator must be reduced for
every leap day that falls within the period. Notice that in the formula the
clean price is used.

@ With reference to the bond under examination, we have

. _ 275+ (100 - 99.76)/2.2575
YtMsimple = 99.76,/100
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Main relationships: Simple Compounding

Simple compounding
P(t, T) L(t, T) F(t, T1,T2)
P(t.T) - 1+L(t,71')(T—t) 1+F(t,T,1T)(T—t)
LeT) | (e 1) - F(t,T,T)
F(e.TuTo) | 1 (hemd—1) -
) | =SEEDL LD, FT. D,

(@©Gianluca Fusai (Cass ) Yield Curve Basics SMM269 170 /171



Day Count Conventions

Gianluca Fusai

Universita Luigi Bocconi - Academic Year 2019-20
These notes can be freely distributed under the solely requirement that the

authors’s name is explicitly cited

Dipartimento SEI, Universita del Piemonte Orientale
gianluca.fusai@uniupo.it

Faculty of Finance, Cass Business School, City University London
gianluca.fusai.1@city.ac.uk



Day-Count Convention
Day-Count convention: 30/360
Day-Count conventions: Act/365
Day-Count convention: Act/360
Day Count Convention: Act/Act
Date rolling

Holidays
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Useful Readings

e OpenGamma Interest Rate Instruments and Market Conventions
Guide. 16th December 2013. Available at: https:
//developers.opengamma.com/quantitative-research/
Interest-Rate-Instruments-and-Market-Conventions.pdf

e 30/360 Day Count Conventions. Excel spreadsheet with worked
30/360 examples available at
http://www.isda.org/c_and_a/trading_practice.html.

e Euro market ACT/ACT Day Count Conventions: available at
http://www.isda.org/c_and_a/trading_practice.html.

o Wikipedia at
https://en.wikipedia.org/wiki/Day_count_convention

Excel Files

e 30-360-2006I1SDADefs.xls
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Day-Count Convention



Day-Count convention

e The particular choice that is made to measure the time between two
dates is known as DAY-COUNT CONVENTION.

e The bond markets in Europe and elsewhere have developed
independently with different conventions for calculating prices, yields
and interest rates and settling the various instruments. Recent
changes are making the markets more homogeneous, due also to the
advent of the Euro and the wide acceptance of the ISMA yield
methodology.

e The most frequently used day-count conventions are (see James and
Webber, pagg. 52-53):

1. 30/360
2. Actual/365
3. Actual/360

e Different countries and markets handle in different way exceptional

situations.



Day-Count convention: 30/360



30/360

e This accrual method assumes 30 days per month and 360 days per
year. Hence, the accrual factor is simply the number of accrued
days divided by 360.

e The 30/360 method groups a certain number of methods that have
in common the accrual factor as

360 X (Yo — Y1) +30 x (M — My) + (Dy — D)
360

but differs on how the Y;, M; and D; are computed.

e In practice, we need to count the whole number of calendar months
in between the two dates and then add on the fractions of each
month at the start and end of the period.



30/360 ISDA

3. 30/360
This is definition 416(f) in 2006 ISDA Definitions. The date adjustment rules are the following:

o IfD1is 31, then change D1 to 30.
o [fD2is 31and D1 is 30 or 31, then change D2 to 30.
This day count convention is also called 30/360 US, 30U/360, Bond basis, 30/360 or 360/360. The last

three terms are the ones used in the 2006 ISDA Definitions.
There exists also a version of the day count which depends on an EOM convention. In that case an

extra rule is added:
o IfEOM and D1is last day of February and D2 is last day of February then change D2 to 30 and D1

to 30,
The ISDA definitions do not refer to the EOM convention.

Other names: Bond Basis, 30-360 U.S. Municipal



Example
The year fraction between January 31st, 2007 and February 28th, 2007 is:

Dy = 30, Dy = 28; My = 1, My = 2: Y1 = 2007, Y5 = 2007,

therefore
360 x 0430 x 1+ (28 — 30) 28

360 " 360"




30E/360 IS and 30E/360 ISDA

4, 30E/360

This is definition 416(g) in 2006 ISDA Definitions. The date adjustment rules are the following:

o IfD1is 31, then change D1 to 30.
o IfD2is 31, then change D2 to 30.

This day count convention is also called Eurobond basis.

5. 30E/360(ISDA)

This is definition &416(h) in 2006 ISDA Definitions. The date adjustment rules are the following:

o IfD1is the lost day of the month, then change D1to 30.
¢ |fD2is the last day of February but not the termination date or D2 is 31, then change D2 to 30.



Example 30E/360
The year fraction between Sept 30th, 2007 and October 31st, 2008 is:

Dy = 30, Dy = 30; My =9, M> = 10; Y1 = 2007, Y> = 2007,

therefore
360 x 0+ 30 x 1+ (30 — 30) 30

360 " 360"

Example 30E/360 (ISDA
The year fraction between January 31st, 2007 and February 28th, 2007 is:

D1 = 30, D2 = 30; Ml = 1, M2 = 2; Y1 = 2007, Y2 = 2007,

therefore
360 x 0+ 30 x 1+ (30 — 30) 28

360 T 360




Table 1: Sample calculations under alternative versions of 30/360 and 30E/360 found
in 2006 ISDA Definitions. Source: David Mengle, ISDA Head of Research.

Calculation Period  30/360 (Bond Basis) 30E/360 (Eurobond) 30E/360 (ISDA)
Start Date End Date D1 D2 Days D1 D2 Days D1 D2 Days

01/15/07 01/30/07 15 30 15 15 30 15 15 30 15
01/15/07 02/15/07 15 15 30 15 15 30 15 15 30
01/15/07 07/15/07 15 15 180 15 15 180 15 15 180
09/30/07 03/31/08 30 30 180 30 30 180 30 30 180
09/30/07 10/31/07 30 30 30 30 30 30 30 30 30
09/30/07  09/30/08 30 30 360 30 30 360 30 30 360
01/15/07 01/31/07 15 31 16 15 30 15 15 30 15
01/31/07 02/28/07 30 28 28 30 28 28 30 30 30
02/28/07 03/31/07 28 31 33 28 30 32 30 30 30
08/31/06 02/28/07 30 28 178 30 28 178 30 30 180
02/28/07 08/31/07 28 31 183 28 30 182 30 30 180
02/14/07 02/28/07 14 28 14 14 28 14 14 30 16

02/26/07 02/29/08 26 29 363 26 29 363 26 30 364




Day-Count conventions: Act/365




Actual /365 Fixed

e A year is 365 days long and the year fraction between two dates is
the actual number of days between them divided by 365.
e The accrual factor is the actual number of accrued days divided by

365:
Dy — Dy

365
where Dy — Dy is the number of days between the two dates.
e The number 365 is used even in a leap year.
e This convention is called English Money Market basis.
e This accrual is sometimes used in the money market and in
calculating accrued interest of bonds or swaps.

Example
The year fraction between February 5, 2002 and March 24, 2002 is:

47
365 0.12877 years

11



Actual /365 A

e A year is 365 days long and the year fraction between two dates is
the actual number of days between them divided by 365.

e The accrual factor is the actual number of accrued days divided by

365:
D> — Dy

Denominator
where Dy — D1 is the number of days between the two dates.

e Denominator is 366 if 29 February is between D; (exclusive) to Dy
(inclusive) and 365 otherwise.

e The convention is also called ACT /365 Actual.

12



Day-Count convention: Act/360




Actual /360

e This accrual method calculates the actual number of days between
two dates and assumes a year basis of 360 days.
e The accrual factor is the actual number of accrued days divided by

360
Dy — Dy

360
where Dy — D1 is the number of days between the two dates.
e This is the most used day count convention for money market
instruments (maturity below one year).
e This day count is also called Money Market basis, Actual 360, or
French.

Example
The year fraction between February 5, 2002 and March 24, 2002 is:

47
360 0. 13056 years

13



Day Count Convention: Act/Act




Act/Act ISDA

e The accrual factor is

Days in a non-leap year n Days in a leap year

365 366
e To compute the number of days, the period first day is included and

the last day is excluded (1991 ISDA definitions).
e Examples:

e Start date: 30-Dec-2010; End date: 2-Jan-2011:

S
—— = 0.008219.
365

e Start date: 30-Dec-2011; End date: 2-Jan-2012:
2 1
— 4+ — = 0.8211.
365 * 366 08
e Start date: 30-Dec-2010; End date: 2-Jan-2013:

367 366 1

365 + 366 + 365 2.008219.

14



Act/Act ISMA and Act/Act AFB i

e The accrual factor according is

Days in the period

Denominator
e Days in the period: actual number of days from and including the
last coupon date to, but excluding, the current value date.

e ISMA: Denominator is the actual number of days in the coupon
period multiplied by the number of coupon periods in the year.

e AFB: Denominator is either 365 (if the calculation period does not
contain 29th February), or 366 (if the calculation period included
29th February).

15



Act/Act ISMA and Act/Act AFB ii

Examples

e Start date: 1st-Nov-2003; End date: 1st-May-2004:
e Days from Nov to 31 Dec: 61; Days from 31 Dec to May: 121.
e ISDA Method:

61 121
365 + 366 0.497724.
e ISMA Method:
182
182x2
e AFB Method:
182 = 0.49727.

366

16



Other conventions

30E/360 ISDA
NL/365
Business/252

e For additional details, consult

a. https://en.wikipedia.org/wiki/Day_count_convention

b. https://wiki.treasurers.org/wiki/Day_count_conventions

17
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Day Count Conventions across the World

Money Market Basis Government Bond Basis

Australia Act/366 Act/Act
Canada Act/365 Act/365
Euro Act/360 Act/Act
Japan Act/360 Act/365
UK Act/365 Act/Act
USA Act/360 Act/Act

Table 2: Daycount Basis for the major currencies

18



Excel function: YearFrac

e This function determines the fraction of a year occurring between
two dates based on the number days between those dates using a
specified day count basis.

e |t is not very reliable.

A | B | C | D | E | F | G | H
1 YearFrac(start_data;end_data;basis)
2
3
4 d_e 10/25/1996 1/27/1998
5 d_t 12/31/1996 2/1/1999
6 Day Count Basis
7 30/360 0 0.183333333 1.011111111  =yearfrac($E$4,$E$5,C7)
8 ACT/ACT 1 0.183060109 1.013698630 =yearfrac($E$4,$E$5,C8)
9 ACT/360 2 0.186111111  1.027777778 =yearfrac($E$4,$E$5,C9)
10 ACT/365 3 0.183561644 1.013698630 =yearfrac($E$4,$E$5,C10)
11 30/360 4 0.180555556 1.011111111  =yearfrac($E$4,$E$5,C11)
12
13

19



Matlab function: YearFrac

[YearFraction] = yearfrac(Datel, Date2, Basis)
Inputs:

e Datel - [Nx1 or 1xN] vector containing values for Date 1 in either
date string or serial date form

e Date2 - [Nx1 or 1xN] vector containing values for Date 2 in either
date string or serial date form

e Basis - [Nx1 or 1xN] vector containing values that specify the Basis

for each set of dates.

20



Comparing Matlab and Excel

d_e 25 oct 96 27 jan 98
d_t 31 dec 96 01 feb 99
‘ Basis ‘ Day Count Matlab Excel

0 actual/actual(default)  0.183561644  1.01369863
1 30/360 SIA 0.183333333 1.011111111
2 actual /360 0.186111111  1.027777778
3 actual /365 0.183561644  1.01369863
4 30/360 PSA 0.183333333  1.011111111
5 30/360 ISDA 0.183333333  1.011111111
6 30/360 European 0.180555556  1.011111111
7 actual /365 Japanese 0.183561644  1.01369863
8 actual/actual ISMA 0.183561644  1.01369863
9 actual /360 ISMA 0.186111111  1.027777778
10 actual /365 ISMA 0.183561644  1.01369863
11 30/360 ISMA 0.180555556  1.011111111

Table 3: Values in the third column have been produced with the Matlab function
yearfrac('25 oct 96’, '31 dec 96’, [0:11]). Values in the fourth column have been
produced with the Matlab function yearfrac('27 jan 98’, '1 feb 99', [0:11]). Notice that

the Matlab and Excel functions yearfrac do not provide always the same result (see the 21
row labelled ACT/ACT examble)



Date rolling




Date rolling i

Source: http://en.wikipedia.org/wiki/Accrued_interest

e Date rolling comes into effect because many instruments can only
pay out accrued interest on business days.

e Therefore, we have to roll the payment to a good business day.

e This often results in interest accruing for a slightly shorter or longer
period.

e However, if interest is unadjusted, interest roll dates and payment
dates can be different.

e Common date rolling conventions are of four different types:

Following business day

Modified following business day

Preceding business day

Modified previous business day

22
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Date rolling ii

1. Following business day

e The payment date is rolled to the next business day.
e Examples: Start date 18-Aug-2011 (Thurs.), period 1 month: end
date: 19-Sep-2011 (Monday).

2. Modified following business day.

e This is the most used convention for interest rate derivatives.

e The payment date is rolled to the next business day, unless doing so
would cause the payment to be in the next calendar month, in which
case the payment date is rolled to the previous business day.

e Examples: Start date 30-Jun-2011, period 1 month: end date:
29-Jul-2011 (Friday). The following rule would lead to 1-Aug
(Monday) which is in the next calendar month with respect to 30-Jul
(Saturday).

23
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Date rolling iii

3. Previous business day.

e The payment date is rolled to the previous business day.
e Examples: Start date 18-Aug-2011, period 1 month: end date:
16-Sep-2011 (Friday).
4. Modified previous business day.

e The payment date is rolled to the previous business day, unless doing
so would cause the payment to be in the previous calendar month, in
which case the payment date is rolled to the next business day.

e Examples: Start date 1-Apr-2011, period 1 month: end date:
2-May-2011 (Monday). The preceding rule would lead to 29-Apr
(Friday) which is in the previous calendar month with respect to
1-May.

24



Date rolling iv

5. End of Month

e Where the start date of a period is on the final business day of a
particular calendar month, the end date is on the final business day
of the end month (not necessarily the corresponding date in the end
month).

e Start date 28-Feb-2011, period 1 month: end date: 31-Mar-2011.

e Start date 29-Apr-2011, period 1 month: end date: 31-May-2012.
30-Apr-2011 is a Saturday, so 29-Apr is the last business day of the
month.

e Start date 28-Feb-2012, period 1 month: end date: 28-Mar-2012.
2012 is a leap year and the 28th is not the last business day of the
month!

25



Date rolling v

6. IMM days: International Money Market or IMM days are the third
Wednesday in March, June, September and December. They are
used in the interest rate futures market.

26



Holidays




e The primary sources used depend on the currency and are as follows:

AUD: Reserve Bank of Australia (the holidays in New South Wales apply;
e-mail contact: mailto:southersm@rba.gov.au)

CAD: Federal Bank of Canada (see http://www.bank-banque-canada.ca)
and Canadian Bankers Association

HF: Swiss National Bank (see http://www.snb.ch)

KK: Danmarks Nationalbank (see http://www.riksbank.com)

EUR: TARGET holidays (as published by the European Central Bank)
GBP: Department of Trade and Industry (England and Wales)

JPY: Bank of Japan (see http://www.boj.or.jp/en/about/holi.htm;
note that the dates of the invernal and autumnal equinoxes play a role in
defining Japanese holidays)

NOK: Norges Bank (see http://www.norges-bank.no)

NZD: Federal Reserve Bank of New Zealand (see
http://www.rbnz.govt.nz/payment/ESAS/index .html)

SEK: Sveriges Riksbank (see http://www.nationalbanken.dk)

27
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e USD: Federal Reserve Bank of New York [Federal Holidays], plus Good
Friday [NYSE] (see
http://www.ny.frb.org/bankinfo/services/frsholi.html and
http://www.ny.frb.org/bankinfo/circular/11087.html)

e ZAR: Reserve Bank of South Africa (see http://www.resbank.co.za with
email contact: mailto:info@resbank.co.za)
e Above information has been taken from:
http://www.swx.com/download/trading/products/bonds/

accrued_interest_en.pdf

e As a cross-check, the very comprehensive International Bank
Holidays calendar published by the Banque Generale du Luxembourg
is used (see http://www.bgl.lu).

e ISMA publishes holiday information (see http://www.isma.org).
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QOutline

© Forward Rates & Forward Prices

e No Arbitrage: Forward and Spot Rates

© Term Structure of Forward Rates

@ Using Forward Rates to build Term Structure Scenarios
© Case Study: Estimating the cash flows of a FRN

e Case Study: Forward Price of a Coupon Bond

@ Conclusions
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Spot and Forward Rates

Spot Rates
1 1+ /_(t, T3:)f\t,T3
_1 ]. + L(t, T2)“t,T2

1 14L(t Th)ag T
NN
Forward Rates
-1 14+ F(t, T, T3)[\T2,T3
N

1 1+ F(I‘, T1, Tz)thl,TQ

_—

1 14+F(tt T)ae T

-

-
t T 7 T

anluca Fusai (Cass ) Forward Rates SMM269

4/46



Forward Deposit

© On the Value Date t we fix the forward rate F(t, T1, 7).

@ At time T; (the Reset Date) we make a deposit;

@ At time T, (the Payment Date) we receive back our deposit and interests

© Interests are computed according to a given compounding convention. Here
we use simple compounding.

1+ F(t, Tq, T2)“T1,T2

. ]

t J 7‘-2

@ So the forward rate is the rate at which we could sign a contract today to
borrow or lend between periods T7 and T».

@ Remark Notice that if the reset date coincides with the Value Date, the
forward rate becomes a spot rate

F(t t, Tp) = L(t, Tp).
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Forward Contract on a Zero-Coupon

@ On the Value Date t we fix the forward price P(t, T1, T2).
@ At time T1 we pay the forward price.

© At time T, we receive one unit of currency.

1
7 }
t ! 7,

—P(t, Ty, T2)

(@©Gianluca Fusai (Cass ) Forward Rates SMM269
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Forward Price and Forward Rate

Forward Price and Forward Rate

@ The forward price P (t, Ty, T2) is the price fixed in t and to be paid in Ty
to receive 1 USD in T».

@ The forward rate F (t, T1, T2) is the return of the forward operation.

@ It can be computed according to different conventions (simple, annually,
continuous).

@ If we use simple compounding, then we have
Direct formula

1
P(t Ty, To) = .
(t. 71, T2) 1+F(t T1, T2) X &7y 7,

Inverse formula

F(tT1, To) = — ( L _1>_

a1, \P(t. T1, T2)

(@©Gianluca Fusai (Cass ) Forward Rates SMM269 7/46



Example (Forward Final value)
@ The 6x9 FRA rate is 2.41%.

@ How much do | receive in 9 months if | make a deposit (notional value=1000
Euro) in 6 months time?

@ We have:

1000 x (1 + 0.0241 x %) = 1006.025 Euro.

ey

Forward Rates SMM269 8/46



Example (Forward Present value)

@ The simple forward rate for a 3x6 month deposit in USD is 1.29%.

@ How much do | need to invest in 3 months time, if | want an amount of
1000USD to be available in 6 months time?

@ Therefore:

1000
(1400120 x $%)

= 996.785USD.




Question

@ Can we establish a relationship between spot and forward prices/rates?
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Joining Spot and Forward Rates

Spot Deposit up to T»

-1 1+L(t, Tg)lxt'TZ

~Spot Deposit up to 7; + Forward Deposit 71 x Ts
1 1+L(t, T]_)Déthl
— (14 L(t, T))ay,T,)

(14 L(t, To)ae1y) X (L+F(t, Ty, T2)at,,75)

: T T2T| me
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No arbitrage restriction

FV deposit upto T, = FV deposit up to T1 x FV forward deposit T X To

Table 1: Final Value (FV) in T via two different strategies

The no arbitrage restriction is
1+ L(t, T2)(Xt’7-2 = (1 + L(t, Tl)oét’-rl) X (1 + F(t, T1, T2)0‘T1,T2)

and then we have a I|nk betwef)n spot an%forward rates
Ol Tz PLE T« POT

F(t, Ty, T2) = 2 —1]. 1
( ! 2) a7, T, <1+ L(t, Tl) X & T, ( )

%TW\P\Q CA)WDW/W&% CoN Ve o
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Forward and Spot Prices

Let us obtain a no-arbitrage relationship linking forward prices and spot prices.
@ Let us consider the following strategy:

t T T

buy a Ty zcb —P(t, To) 1
sell k T zcb kP (t, T1) —k

cash flows kP (t, T1)—P(t, To) —k 1
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Forward and Spot Prices

Let us obtain a no-arbitrage relationship linking forward prices and spot prices.
@ Let us consider the following strategy:

t T T

buy a Ty zcb —P(t, To) 1
sell k T zcb kP (t, T1) —k

cash flows kP (t, T1)—P(t, To) —k 1

@ Choose k such that the cash flows at t are 0:
kP (t, T1) — P (t, T2) =0,

i.e., we have
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Forward and Spot Prices

Let us obtain a no-arbitrage relationship linking forward prices and spot prices.
@ Let us consider the following strategy:

t T T

buy a Ty zcb —P(t, To) 1
sell k T zcb kP (t, T1) —k

cash flows kP (t, T1)—P(t, To) —k 1

@ Choose k such that the cash flows at t are 0:

kP (t, T1) — P (t, T2) =0,

i.e., we have
K — P (t, Tz)
o P (t, Tl)
@ The cash flows become
t T]_ T2
cash flows 0 — gg:%% 1
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Forward Prices

@ The strategy consists of:

@ zero-investment at time t;
P(t,Tz)
P(t,Tl)
© receive a unit amount at time T».

@ a payment of amount at time Tq;

t T1 T>

P(t,T2)
0 _P(t,Ti) 1

cash flows

@ In a forward contract the cash flows are
t T1 T2
cash flows 0 —P(t, T1,T2) 1

@ No arbitrage implies that

P(t. 1, Ty) = AL T2)

P(t.T1) (2)

(©Gianluca Fusai (Cass ) Forward Rates SMM269 14 /46



No Arbitrage forward price and rate

No arbitrage Forward Price

No arbitrage says that the forward price is related to the zcb spot prices trough

P(t To) 1 (14 L(t Ty)a, T
P(t T, Ta) = = oY
(t, 1 2) P(t, Tl) XTy, T, (1 + L(t, T2)at,T2

No-Arbitrage Forward Rate

The simple forward rate is related to spot zcb prices according to the formula

1 P(t, Tl) ) 1 <1+L(t, TQ)lXtT )
F(t,T1, ) = —-1) = —=—1).
( ! 2) XT;, T, <P(t, Tz) XTy T, lJrL(t, Tl)vct,Tl

Remark: The above formula assumes simple compounding. If we use different
compounding rules, the forward rate will be computed in a different way.
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Question

@ The 6m USD LIBOR (182 days) is 1.25%.
o The 7m USD LIBOR (209 days) is 1.35%.

What is the 6x7 forward rate?
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Answer

@ The 6m USD LIBOR (182 days) is 1.25 %. Therefore the 6m spot zcb price is

1

= 0.993720.
140.0125 x 18

@ The 7m USD LIBOR (209 days) is 1.35 %. Therefore the 7m spot zcb price is

1
1+0.0135 x 3%

= 0.99222.

@ The 6x7 forward rate is

1 y (0.993720
209-182
s 0.99222

1
360
@ Or using (1) at page 12, we have

1 [(1+135%%
F(O,6m,7m):< RRSlAb Y,

7
o \1+125%%

- 1) = 2.0114%. 3)
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How many forward curves? |

@ To a given term structure of spot rates we can associate forward curves with
different tenors.
@ The most important are the ones with O/N, 1m, 3m, 6m and 12m tenors.
> If we have a 3m tenor forward curve, we are considering: F(0,0,3m);
F(0,3m,6m); F(0,6m,9m); F(0,9m,12m); etc.
> If we have a 6m tenor forward curve, we are considering: F(0,0,6m);
F(0,6m,12m); F(0,12m,18m); F(0,18m,24m); etc.
> If we have a 12m tenor forward curve, we are considering: F(0,0,12m);
F(0,12m,24m); F(0,24m,36m); F(0,36m,48m); etc.
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How many forward curves? Il

Monthly Tenor F(t, T;, T; + 1m)

R 1 23 x 24
Quarterly Tenor F(t, T;, T; +3m)

0x3 3%x6 6x9 9Ox12 12x15 15x18 18x21 21 x 24
Semi-Annual Tenor F(t, T;, T; + 6m)

0x6 6 x 12 12 x 18 18 x 24
Annual Tenor F(t, T;, T; + 12m)

0x12 12 x 24

Figure 1: lllustration of different tenor structures
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T, LuT)%  P(LT)  P(tTiTie)  F6T;Tig1)%
1 2,005 0.9983 0.9983 2.0950
2 2110 0.9965 0.9982 21213
3 2.154 0.9946 0.9981 2.2341
4 2172 0.9928 0.9982 22141
5 2.190 0.9910 0.9981 22457
6 2208 0.9891 0.9981 22772
7 2236 0.9871 0.9980 23777
8 2.267 0.9851 0.9980 2.4520
9 2.209 0.9830 0.9979 25170
10 2.330 0.9810 0.9979 25648
11 2.361 0.9788 0.9978 26201
12 2.384 0.9767 0.9979 25811

Months

Figure 2: Left Panel: Term Structure of LIBOR rates, discount factors, forward discount factors
and forward rates. The forward price 2x3 is computed by taking the ratio of the 2 month and 3
months discount factor, i.e. 0.9946/0.9965 = 0.9981. The 2x3 forward rate is then computed
out of the forward price, e.g. (1/0.9981 —1)/(1/12) = 2.2341%. Right Panel: LIBOR curve

(different tenors) and Forward Curve (1 month tenor).
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Term  Discount Factor Fwd 3m Fwd 6m Fwd 12m

0.00 100.0000%

0.25 100.0771% -0.3083%

0.50 100.1227% -0.1821%  -0.2451%

0.75 100.1374% -0.0585%

1.00 100.1217% 0.0625% 0.0020%  -0.1216%
1.25 100.0764% 0.1811%

1.50 100.0021% 0.2972% 0.2392%

1.75 99.8995% 0.4108%

2.00 99.7693% 0.5221% 0.4667% 0.3532%
2.25 99.6122% 0.6310%

2.50 99.4288% 0.7375% 0.6848%

2.75 99.2201% 0.8417%

3.00 98.9866% 0.9436% 0.8936% 0.7908%

Table 2: Term structure of simple forward rates with different tenors.
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Where will be the rates in the future? |

Where will be the rates in 1 year?
and in 2 years?
Fact

@ Forward rates provide so called market risk-neutral expectations of future
rates.

So, if we are interested in a possible scenario of the term structure in 1 year,
we can compute forward rates starting in 1 year and with different horizons.

@ If the market forecasts will be realized those should be the future values of
the spot rates.

Notice that in a deterministic world, interest rates can change over time, but
they move according to the current forward curve.

So if the 6m LIBOR is 1.25%, the 9m LIBOR is 1.35% and the 6x9 forward

rate is 2.0114%, in a deterministic world the 3m LIBOR that we will observe
in 6 monts time should be equal to 2.0114%.

(@©Gianluca Fusai (Cass ) Forward Rates SMM269 23/46



Where will be the rates in the future? IlI

Table 4: Term Structure Scenarios according to the forward curve: 99.65=99.77/100.12. Rates

computed according to the continuously compounded convention.

Term  Spot Today DF DF in 1 Year Spotinlyr DFin2yrs Spotin2yrs
0.00 -0.37% 100.00% 100.00% 100.00%

0.25 -0.31% 100.08% 99.95% 0.18% 99.84% 0.63%
0.50 -0.25% 100.12% 99.88% 0.24% 99.66% 0.68%
0.75 -0.18% 100.14% 99.78% 0.30% 99.45% 0.74%
1.00 -0.12% 100.12% 99.65% 0.35% 99.22% 0.79%
1.25 -0.06% 100.08% 99.49% 0.41% 98.96% 0.84%
1.50 0.00% 100.00% 99.31% 0.46% 98.68% 0.89%
1.75 0.06% 99.90% 99.10% 0.52% 98.37% 0.94%
2.00 0.12% 99.77% 98.87% 0.57% 98.05% 0.99%
2.25 0.17% 99.61% 98.61% 0.62% 97.70% 1.03%
2.50 0.23% 99.43% 98.33% 0.67% 97.33% 1.08%
2.75 0.28% 99.22% 98.03% 0.73% 96.95% 1.13%
3.00 0.34% 98.99% 97.70% 0.78% 96.54% 1.17%

Forward Rates SMM269 24 /46
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Where will be the rates in the future? Il

Scenario Analysis of the Term Structure

2.50%
2.00%
1.50%
1.00% P B P R
0.50%

0.00% o

@SpotToday @ Spot Curvein 1year @ Spot Curve in 2 year

Figure 3: We use the forward curve to build future scenarios of the Term Structure of (continuously
compounded) Spot Rates.
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Case Study
Estimating the cash flows of a FRN
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Estimating the cash flows of a FRN |

@ We are interested in estimating the cash flows of a FRN

@ The FRN has quarterly coupons according to the formula
3m US Libor 4100 bp

@ The FRN expires in 8 months.
@ The current coupon is 2.23%.

Reset Date (m) Payment Date (m) Cash Flow
-1 2 2.23%x0.25
2 5 (L(2m,5m) + 1%)x0.25
5 8 (L(5m,8m) 4 1%)x0.25 + 1

Table 5: Cash Flow schedule
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Estimating the cash flows of a FRN Il

@ We can estimate the unknown coupon rates due in 5 and 8 months.
a. For the coupon due in 2 months we need the current coupon rate.

b. The coupon that is paid in 5 months resets in 2 months. We need the 2x5
forward rate.

c. The coupon that is paid in 8 months resets in 5 months. We need the 5x8
forward rate.

@ Linearly interpolating reported LIBOR rates for terms of 5m, and 8m we can
compute the relevant discount factors.

@ Then we can compute the 2x5 and 5x8 forward rates.
@ Let us see the LIBOR quotes on the trade date (6th Feb. 2018).
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Estimating the cash flows of a FRN Il

We have the following term structure of LIBOR rates

Table 6: US Libor rates on 6th February 2018

Tenor Rate
overnight  1.43875%
1 week 1.46875 %
2 weeks

1 month 1.57926 %
2 months  1.67149 %
3 months  1.79070 %
6 months 1.99188 %
12 months 2.27825 %
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Estimating the cash flows of a FRN IV

Table 7: We need 5m and 8m LIBOR rates. Interpolation of quoted rates to reconduct to the
relevant dates

Interpolated

Time Adjacent Rates Tenors Weights Rate DF
2 1.6715% | 0.99722
5 1.7907% 1.9919% | 3 6 | 33.33% 66.67% | 1.9248% | 0.99204
8 1.9919% 2.2783% | 6 12 | 66.67% 33.33% | 2.0873% | 0.98628
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Estimating the cash flows of a FRN V

Table 8: Computing expected coupons of the FRN, replacing the unknown LIBOR rate in the
coupon formula by the corresponding forward rate

| Term DF Tenor Fwd Rate Spread Cpn Rate Cash Flow
0 1
2 0.99722 0.25 2.2300% 2.2300% x 0.25
5 0.99204 0.25 2.0879% 1% 3.0879%  3.0879% x 0.25
8 0.98628 0.25 2.3394% 1% 3.3394%  3.3394% x 0.25
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Estimated coupons (%) of the FRN

B Forward Rate (%) | |
3 B Spread (%)
2 [
1 [
O |

00n 2m 5m 8m
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Case Study:
Forward Price of a Coupon Bond
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Buying Forward a Coupon Bond

t 1 T2 T3 Ty
—B (t, T, (Tl, Ty, -+, Tn))

Figure 4: Cash flows on a forward coupon bond
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Forward Price of a Coupon Bond

Example (Forward Price of a Coupon bond)

@ We have to compute the forward price on a bond. This price is fixed today
but paid forward.

@ We buy the bond in 6 months.
@ The bond expires in 1 year and pays quarterly coupons.

@ The notional coupon of the bond is 4%.

Term 0 0.25 0.5 0.75 1
Event Buy Forward Cpn Cpn+FV
Cash Flows 1 101

@ Notice that we have only to consider cash flows occurring after the
option expiry, i.e. in 9 and 12 months.!
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Example ((...continued))
@ Let us compute the forward price of the bond.
@ This a portfolio of forward zero-coupon bonds.
@ Determine the forward price of the zcbs, 6x9 and 6x12 and sum up.
@ The term structure of discount factors is given in the following Table

Time 0.25 05 0.75 1
DF 099 098 0.97 0.96

@ In 9m the coupon cash flow is
0.04 x 0.25 x 100 = 1.

In 12m the cash flow is

0.04 x 0.25 x 100 + 100 = 101.

@ The forward price of the bond for delivery in 6 months is
0.97 0.96
— —— =0.9898 = 98.9388 = 99.92836.
1008 711 % o8
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Question

09§ 0.9% 0. a4
[* m + Iy 0—?0'1 + )QlY 077

Determine the 3m forward price of the coupon bond in the last Case Study.
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Answer
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Conclusions

We have introduced forward contracts.
How to determine the rate on a forward deposit.
The forward term structure.

How to use forward rates.

How to use forward prices.

(@©Gianluca Fusai (Cass ) Forward Rates SMM269 39/46



Instantaneous forward rate

@ Given the forward rate F (t, T, T + A) we let A — 0.
@ We can define the so called instantaneous forward rate:

f(t,T) = (t, T, T+ At)

lim F
At—0
— _ m InP(t, T+At)—InP(t, T)
At—0 At
alnP(t, T)
9T

e f(t, T) is then the return on a forward contract stipulated at time t, with
starting date T and instantaneous expiry in T + At.

@ Viceversa, we have:
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The term structure of instantaneous forward rates

@ The instantaneous forward term structure is intended as the plot at time t of
f (t, T) starting at date T with infinitesimal maturity.

@ Note that for this curve, it is the starting date of the forward deposit T that
changes, not the maturity of the instantaneous forward rate.

The tenor of the forward deposit is infinitesimal.

Note that the forward term structure is a implied curve: it can be
constructed once we have P (t, T),VT > t.

In general, f (t, T) is not a traded quantity.
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f(t,T)and R(t, T)

@ The knowledge of all instantaneous forward rates for all T > t at a given
time t, allows the determination of different quantities.

@ From the relationship between P (t, T) and R (¢, T), we have:

-
In P T f f(t,s)ds
R(t, T) = —— G _ & :
T—t T—t
i.e. the spot rate is an average of forward rates.
@ Viceversa:
o(T—t)R(t, T) OR (t, T)
f(t, T)= =R(t, T T—t)——=.
(1) o (6.1 + (7 - Bl |

i.e. forward rates are related to the level and slope of the term structure of
spot rates.
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Spot and forward rates

@ Given the relationship between f (t, T) and spot rates R (t, T), if we plot
the term structure of forward rates we have:
Q@ f(t,T)>R(t, T)if R(t, T) is increasing in T — t;
Q@ F(t.T)=R(t, T)if R(t, T)is flat;
Q (t, T)<R(t, T)if R(t, T) is decreasing in T —t

1. f(t, T) > R(t, T) 2. f(t, T)=R(t, T) 3. f(t, T) < R(t, TI)
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The instantaneous interest rate r (t) |

The instantaneous interest rate, or short rate, is the return on a spot deposit of
infinitesimal length.

@ Let us consider r (t). By definition:

r(t) = ﬁmtR(t, T)=lm ——— =f(t,t)

ftT f(t,s)ds
Tt T —t

i.e. the instantaneous interest rate is a particular forward rate.
@ The knowledge of r (t) does not say anything about f (¢, T), T > t.

@ Only if we known the future path of r(.), we can recover f (¢, T) :

.
Fe) =P D)2 (G J

@ Then, under a deterministic evolution, the instantaneous interest
rate at time T is equal to the current instantaneous forward rate f (¢, T).

(©Gianluca Fusai (Cass ) Forward Rates SMM269 44 /46



The instantaneous interest rate r (t) Il

@ Remarks:

© It is a convenient quantity to use for modelling purposes: the math is simpler.
For this reason, the first term structure models (Vasicek and CIR) were short
rate models, i.e. models assigning the dynamics of r (t).

© Note that r (t) does not depend on the maturity T any longer.

© r(t) represents just a point on the term structure of spot rates: it is the
intercept on the vertical axis.

@ r(t) does not exist as traded quantity in the market.
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r(t) and P(t, T)

@ In general, we cannot recover the whole zero-rate curve by knowing the short
rate at time t only.

Indeed, given the discount curve we can obtain r(t) according to the previous
formula

P(t, T),VT = r(t).

@ Viceversa, given the short rate we cannot recover the discount curve
r(t) # P(t,T).

@ However, assuming a future deterministic path for r (.), i.e. if we know the
entire future path r (s), t <s < T, then

P(t,T)=e Ji rs)ds,

In general, outside the deterministic world, this relationship is not true.

@ In order to understand the relatioship between P and r, we need to remember
some basic fact on no-arbitrage pricing. In particular, we need to remember
the concept of money market account, risk-neutral expectation and
martingale.
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Introduction |

@ In the valuation of fixed income securities, it is not the Treasury yield curve
(yield to maturity versus maturity) that is used as the basis for determining
the appropriate discount rate for computing the present value of cash flows
but the Treasury spot rates.

@ The Treasury spot rates are derived from the Treasury bond prices using the
bootstrapping process.

@ Similarly, it is not the swap curve that is used for discounting cash flows
when the swap curve is the benchmark but the spot rates. The spot rates are
derived from the swap curve in exactly the same way, using the bootstrapping
methodology.

@ The resulting spot rate curve is called the LIBOR spot rate curve.
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Introduction 1l

@ Moreover, a forward rate curve can be derived from the spot rate curve. The
same thing is done in the swap market.

@ The forward rate curve that is derived is called the LIBOR forward rate curve.

@ In the United States it is common to use the Treasury spot rate curve for
purposes of valuation.

@ In other countries, either a government spot rate curve is used (if a liquid
market for the securities exists) or the swap curve is used (or as explained
shortly, the LIBOR curve).
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Bootstrapping

@ The boostrapping approach consists of recovering discount factors from
prices of coupon bearing bonds.

@ The bootstrapping approach requires having at least one zero-coupon bond.

@ Given this bond'’s rate, a coupon bond with the next highest maturity is used
to obtain an implied spot rate

@ Another coupon bond with the next highest maturity is then used to find the
next spot rates, and so on.
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Bootstrapping using Coupon Bonds |

@ Let t be the Value Date.

@ Let us suppose we have n coupon bonds, with coupons ¢; and maturities T;
and prices B; = B(cj, t; T;).

@ Assume that available bonds have maturities at regular intervals (e.g. 6m,
12m, 18m etc or 12m, 24m, 36m etc.) and let us define a;_y ; the
appropriate coupon day count fraction.

Payment Dates & Cash Flows
Bond | Gross Price  Cpn Rate 1 2 n

1 By a c10,1
2 B, (o5} oo, 1 corg1 +1
n Bn Cn Cn0,1 CnlX1,2 Cn&n—1,n +1

n %W@? Mr\b@‘(
o & bondl, = At of maturitiey
— OUMQ W Solurten
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Bootstrapping using Coupon Bonds Il

@ The bootstrap procedure allows to obtain the zero-coupon discount factors
according to the recursive procedure

By
P(t, TH) = ———,
(t, T1) T o < o1
and then for i > 1 B A
P(t,Tn)_ n— Cnh X Ap—1

B 1+cp X an—l,n'

where
AL = P(t, T1)ao 1,

and then we have the recursion

n
An = Z P(t, T,')a,'_]_',' = An—l + P(t, 7—n)g‘n—l,n-
=1

1
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Limits

@ It is not always possible to find bond data at equally spaced intervals.

@ In general the period to the next coupon date is different from the coupon
frequency (except in the exceptional case of being at a coupon date).

@ These problems limit the use of bonds in the bootstrapping iterative
procedure.

@ Instead, bootrstrapping is the standard procedure in the swap market.

@ In this markets quotations of par bonds at equally spaced intervals are
promptly available, althought some interpolation is still required to fill the
missing maturities (eg moving from 10 to 12 years).
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Example (1. Collecting Market Information)

Excel file: Fl_Bootstrappings, Sheet: Ex Bootstrapping Bond
We have 3 bonds with annual coupons and expiring in 1, 2 and 3 years. Quotes
are as in Table 1.

Maturity  Annual Coupon Principal Price

1 3% 100 98
2 4% 100 101
3 5% 100 103

Table 1: Market Quotations

We can build a cash-flow matrix, as in Table 2.

Dates | 0 1 2 3

Bond 1 | -98 103
Bond 2 | -101 4 104
Bond 3 | -103 5 5 105

Table 2: Cash Flow Matrix
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Example (2. Bootstrapping: recovering implied discount factors)

For each bond, we can write the pricing equation: i.e. we set the gross price to be
equal to the present value of the bond cash flows.

© Using the first bond, we have
98 =103 x P(0,1),
and therefore
P(0,1) = 0.951456, A(1) = 0.951456 x (1 —0) = 0.951456.
@ Using the second bond, we have
101 =4 x P(0,1) + 104 x P(0,2),

and therefore

101 — 4 x 0.9514
P(0,2) = 10 1on?95 % _ 0.93456,

and

A(2) = A(1) +0.93456 x (2 — 1) = 0.95146 + .93456 = 1.88602.
Bootstrapping Term Structures SMM269  11/47



Example ((..ctd))
@ Using the third bond, we have

103 =5 x P(0,1) +5 x P(0,2) + 105 x P(0, 3),

and therefore

103 — 5 x (0.951456 +- 0.93456) 103 — 5 x 1.88602

P -
(0.3) 105 105

= 0.89114,

and
A(3) = A(2) +0.89114 x (3 —2) = 2.77716.

@ Therefore, we have the following term structure of discount factors implied by
market prices of coupon bonds

Time (years) T 1 2 3
P(0, T) 0.951456 0.93456 0.89114
A(T) 0.951456 1.88602 2.77716

Table 3: Bootstrapped discount curve
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Example ((..ctd))

© We can check the correctness of our calculations by repricing the three bonds
using the bootstrapped discount curve and the annuity.

©Q Bond 1
B; =103 x 0.951456 = 98.
© Bond 2
By =4 x A(2) + 100 x P(2) = 7.54408 + 93.456 = 101.
©Q Bond 3

B3 = 5 x A(3) 4+ 100 x P(3) = 13.8858 = 89.114 = 103.

© So we have repriced correctly all the bonds used in the bootstrapping
procedure.
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Reasons for Increased Use of Swap Curve

@ Investors and issuers use the swap market for hedging and arbitrage purposes,
and the swap curve as a benchmark for evaluating performance of fixed
income securities and the pricing of fixed income securities.

Since the swap curve is effectively the LIBOR curve and investors borrow
based on LIBOR, the swap curve is more useful to funded investors than a
government yield curve.

The increased application of the swap curve for these activities is due to its
advantages over using the government bond yield curve as a benchmark.

@ The drawback of the swap curve relative to the government bond yield curve
could be poorer liquidity. In such instances, the swap rates would reflect a
liquidity premium.

Fortunately, liquidity is not an issue in many countries as the swap market
has become highly liquid, with narrow bid-ask spreads for a wide range of
swap maturities. In some countries swaps may offer better liquidity than that
country's government bond market.
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Advantages of the swap curve over a government
bond yield curve |

@ There is almost no government regulation (e.g. tax aspects) of the swap
market, that makes swap rates across different markets more comparable.
> In some countries, there are some sovereign issues that offer various tax
benefits to investors and, as a result, for global investors it makes comparative
analysis of government rates across countries difficult because some market
yields do not reflect their true yield.

@ The supply of swaps depends only on the number of counterparties that are
seeking or are willing to enter into a swap transaction at any given time.
Since there is no underlying government bond, there can be no effect of
market technical factors that may result in the yield for a government bond
issue being less than its true yield.

@ Comparisons across countries of government yield curves is difficult because
of the differences in sovereign credit risk. Sovereign risk is not present in the
swap curve because, as noted earlier, the swap curve is viewed as an
inter-bank yield curve or AA yield curve.
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Advantages of the swap curve over a government
bond yield curve Il

@ There are more maturity points available to construct a swap curve than a
government bond yield curve.

» More specifically, what is quoted in the swap market are swap rates for 2, 3, 4,
5,6,7, 8,9, 10, 15, and 30 year maturities. Thus, in the swap market there
are 10 market interest rates with a maturity of 2 years and greater.

> In contrast, in the U.S. Treasury market, for example, there are only three
market interest rates for on-the-run Treasuries with a maturity of 2 years or
greater (2, 5, and 10 years) and one of the rates, the 10-year rate, may not be
a good benchmark because it is often on special in the repo market.

> Moreover, because the U.S. Treasury has ceased the issuance of 30-year
bonds, there is no 30-year yield available.

(@©Gianluca Fusai (2019-20) Bootstrapping Term Structures SMM269 16 /47



Swap Rates and Par Bonds

@ In the swap market we find quotations of the so called par coupon rates, i.e.
the coupon rate so that the underlying bond quotes at par.

@ This par rate is called swap rate.

@ The swap rate S, of maturity T, solves the equation
1=5, Zﬂé,l, T:) + P(t, Th).

@ In the market we find quotes for S, over a very wide spectrum of maturities.
F@fwaﬂ!ﬁ ot X g(ﬁee ej i count care
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INTEREST RATES - SWAPS

Euro-€ £ Stig. SwFr Us$ Yen

Dec 31 Bid  Ask Bid Ask Bid  Ask Bid  Ask Bid

1year 0.14 018 0.63 0.66 -0.14 -0.08 042 045 011 017
2year  0.16 0.20 091 0.95 -0.18 -0.10 0.86 0.89 011 017
3year  0.20 0.24 111 115 -0.14 -0.06 126 1.29 013 0.19
4year 0.26 0.30 1.28 133 -0.07 0.01 155 158 015 021
Syear  0.34 0.38 142 147 0.02 0.0 175 178 0.19 0.25
6year 042 0.46 153 1.58 011 0.19 190 193 0.24 0.30
7year 051 0.55 162 167 0.21 0.29 2.02 2.05 0.30 0.36
8year 0.60 0.64 169 174 0.30 0.38 211 214 0.36 0.42
O9year 070 0.74 176 181 0.39 047 219 222 042 048
10year 079 0.83 1.82 187 0.47 0.55 226 2.29 0.49 0.55
12year 0.95 0.99 191 1.98 0.59 0.69 2.37 240 0.61 0.69
15year 112 116 202 21 0.75 0.85 248 251 0.82 0.90
20year 130 1.34 212 225 0.95 1.05 259 262 109 117
25year 139 143 215 228 106 116 264 267 122 130
30year 144 148 217 2.30 121 2.67 270 129 137

Bid and Ask rates as of close of London business. £ and Yen quoted on a semi-annual actual/365 basis
against 6 month Libor with the exception of the 1Year GBP rate which is quoted annual actual against
3M Libor. Euro/Swiss Franc quoted on an annual bond 30/360 basis against 6 month Euribor/Libor.
Source: ICAP plc.

Figure 1: IRS quotes on 31 Dec 2014. Source: Financial Times Data Archive, http://markets.
ft.com/research/Markets/Data-Archive
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Swap rates and market conventions

@ Different payment frequencies, compounding frequencies and day count
conventions are applicable to each currency-specific interest rate type.

‘ Currency EURO JPY usD GBP CHF
EURIBOR LIBOR or
Index or LIBOR TIBOR LIBOR LIBOR LIBOR
Fixed Leg
A for 1yr
Payment freq. A S/A S/A then S/A A
Day Count 30 AcT 30 AcT 30
Convention 360 365 360 365 360
Floating Leg
3m for 1lyr 3m for lyr
Payment freq. then 6m 6m 3m 6m then 6m
Day Count AcT ACT AcT AcT AcT
Convention 360 360 360 365 360
Business Days Target Tokyo New York London Zurich

Roll Day

modified following

Table 4: Quotation Basis for Interest Rate Swaps
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Table 5: Cash Flows Array of Par Swap Rates (Valid for EUR)

Term
Swap Rate (%) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
100 100.14

0.16 -100 0.16 100.16

02 -100 02 02 100.2

0.26 -100 026 0.26 026 100.26

034 -100 034 034 034 034 100.34

0.42 -100 0.42 0.42 0.42 0.42 042 100.42

051 -100 051 051 051 051 051 051 100.51

06 -100 06 06 06 06 06 0.6 06 100.6

07 -100 07 07 07 07 07 07 07 07 100.7

079 -100 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 079 100.79

?
0.95 -100 095 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 095  100.95

Table 6: EURO MARKET: Swap Rate is quoted on an annual basis. Fixed leg swap payments
are annual. The effective payment is computed on a semi-annual basis. Blue line signals missing
quotations.
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Table 7: Cash Flows Array of Par Swap Rates (Valid for USD, GBP and YEN)

| | Term |
| Swap Rate (%) | 0 05 1 15 2 25 3
0.42 -100  0.21 100.21
?
0.86 043 043 043 10043
?
1.26 063 063 063 063 0.63 100.63

Table 8: US MARKET: Swap Rate is quoted on an annual basis. Fixed leg swap payments
are semi-annual. The effective payment is computed on a semi-annual basis. For example,
0.21 = 0.42 x 0.5, 0.43 = 0.86 x 0.5, etc.. Blue line signals missing quotations.
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Example (Step 1. Bootstrapping Swap Rate)

Accompanying Excel file: Fl_Bootstrappings, Sheet: Ex Bootstrapping

Swap

Table 9: Bootstrapping Discount Factors from Swap Rates

Maturity Swap Rate Principal Price
1 3% 100 100
2 4% 100 100
3 5% 100 100
Cash Flow Matrix
0 1 2 3
-100 103
-100 4 104
-100 5 5 105
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Example (Step 2. Recovering Discount Factors)

We have

P(0, T)  Annuity

T
1
2
3

0.970874 0.970874
0.924197 1.895071
0.862139 2.757210

Table 10: Bootstrapped Discount Curve

Indeed, we can recover market prices

@ 1 year maturity

@ 2 years maturity

103 x 0.970874 = 100.

4 % 1.895971 + 100 x 0.924197 = 100.

@ 3 years maturity, i.e. 5 x 2.757210 4 100 x 0.862139 = 100.
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Case Study

Implement the bootstrapping procedure for EUR Swaps.
How do you deal with missing rates?
Compute the term structure of spot rates

Compute the term structure of (simple) forward rates

1 P(t, Ti_1)
F(t, Tio1, T;) = 1
(8 Ti1. Ti) DCT,»_l,T,-( P(t, T;)

Discuss the issues you encounter

Then implement the bootstrapping procedure for for GBP, USD and Yen.

This example can be found in the Excel File FI_Bootstrapping.xlsm, Sheet
BootstrappingSwapLinear.

(@©Gianluca Fusai (2019-20) Bootstrapping Term Structures SMM269 24 /47



Table 11: Input: EURO Market Swap Rates

Term Bid  Ask

year 0.14 0.18
year 0.16 0.2
year 0.2 0.24
year 0.26 0.3
year 0.34 0.38
year 0.42 0.46
year 0.51 0.55
year 0.6 0.64
9 vyear 0.7 074
10 year 0.79 0.83
12 year 0.95 0.99
15 year 1.12 1.16
20 year 13 1.34
25 year 139 143
30 year 1.44 1.48

O~NO Ok~ WN -
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Table 12: The Output: bootstrapped term structures of discount factors, forward and spot rates.

Gray cells refer to linearly interpolated swap rates.

Term Rate a1 P(0, T;) Annuity Fwd Rate Spot Rate
1 0.66 1 99.34% 99.34% 0.6600% 0.6578%
2 0.95 1 98.12% 197.47% 1.2436% 0.9469%
3 1.15 1 96.62% 294.09% 1.5588% 1.1468%
4 1.33 1 94.83% 388.91% 1.8882% 1.3278%
5 1.47 1 92.92% 481.83% 2.0560% 1.4693%
6 158 1 90.95% 572.78% 2.1628% 1.5810%
7 1.67 1 88.95% 661.73% 2.2495% 1.6729%
8 1.74 1 86.97% 748.70% 2.2726% 1.7447%
9 1.81 1 84.91% 833.61% 2.4272% 1.8173%
10 1.87 1 82.86% 916.48% 2.4736% 1.8799%
11 1.925 1 80.80% 997.28% 2.5488% 1.9379%
12 1.98 1 78.70% 1075.97% 2.6770% 1.9965%
13 2.023 1 76.68% 1152.65% 2.6314% 2.0427%
14 2.066 1 74.64% 1227.29% 2.7359% 2.0896%
15 211 1 72.57% 1299.86% 2.8428% 2.1372%
16 2138 1 70.70% 1370.56% 2.6528% 2.1673%
17 2.166 1 68.82% 1439.38% 2.7236% 2.1978%
18 2.194 1 66.95% 1506.33% 2.7960% 2.2289%
19 2222 1 65.08% 1571.42% 2.8701% 2.2606%
20 2.25 1 63.22% 1634.64% 2.9460% 2.2927%
21 2.256 1 61.73% 1696.37% 2.4149% 2.2971%
22 2.262 1 60.26% 1756.63% 2.4309% 2.3019%
23 2.268 1 58.83% 1815.46% 2.4472% 2.3069%
24 2274 1 57.41% 1872.87% 2.4637% 2.3122%
25 228 1 56.02% 1928.89% 2.4806% 2.3178%
26 2.284 1 54.69% 1983.58% 2.4251% 2.3208%
27 2.288 1 53.39% 2036.98% 2.4366% 2.3240%
28 2.292 1 52.12% 2089.10% 2.4483% 2.3274%
29 2.296 1 50.87% 2139.96% 2.4603% 2.3309%
30 2.3 1 49.64% 2189.60% 2.4724% 2.3346%
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Figure 2: Bootstrapped Discount Curve from Swap Rates
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anluca Fusai (2019-20) Bootstrapping Term Structures SMM269 29 /47



Dealing with Missing Quotes
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Linear Interpolation of Swap Rates

In the interpolation procedure a common assumption consists of assuming
that the par swap rate at each intermediate coupon date lies on the straight
line joining the adjacent swap rates.

For example if the 5yr swap rate is 3% and the 10yr swap rate is 4%, the six

year swap rate is
10—-6 6—5
— x 39
10 -5 A)+10—5

This interpolation method is named, Linear Swap Rates (LSR).

X 4%.

In the previous example, this assumption has been used to obtain the 11, 13,
16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28 and 29 swap rates.

The interpolation method is not neutral on the shape of the forward rates.
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Figure 5: Bootstrapped Term Structures of Spot and Forward Rates (1 year tenor).
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Constraining the Forward Curve

@ A second method, Constant Forward Rates (CFR), constraints the problem
by enforcing that missing swap rates are chosen so that all one year forward
rates be constant.

@ This method is nowadays fairly standard and it is the simplest market
standard methodology. It requires the solution of a simple linear
equation.

@ Other possibilities consist in constraining Forward Rates to lie on a line
or on a parabola.

e An useful discussion can be found at
http:/ /www.fincad.com/news/assets/pdfs/dec05/curve_building.pdf
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Example (1. Market Quotes)

Accompanying Excel file: FI_Bootstrappings, Sheet: LSV vs CFR
Excel spreadhseet: LSW vs CFR
Let us suppose to have the following information

Table 13: Market Rates

Term  Par Swap Rate

1 Not Quoted
2 2.70%
3-4 Not Quoted
5 3.60%
6-7-8-9 Not Quoted
10 4.60%
11-14 Not Quoted
15 4.80%
16-19 Not Quoted
20 4.80%
21-24 Not Quoted
25 4.75%
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Example (2. Assume Constant Forward Rate)

Term 0 1 2
F - F(0,0,1) F(0,1,2)
DF 1 P(01)  P(0,2)
Swap Rate - X 2.70%

@ Let us set
F = Fox1 = F1x2,

and we constraint F to give back the quoted swap rate

1—P(0,2)

o/ __
270% = 501+ P0.2)

@ We have that
1 1

P(O'l):1+F><(1—o) T 1tF

and

1 1 1
P(Ovz):1+,:><(1_0) ><1-|-F><(2—1) - (1+F)2'
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Example (2.1 Solving a second-order equation)
@ Setting x = IJ%F we have

1— x2

2.70% =
X+x2

@ We have to solve the equation
(14 2.70%)x2 4+ 2.70%x — 1 = 0,

@ We find
x = 0.9737,

and therefore
P(0,1) = x =0.97371, P(0,2) = x? = 0.948111.

and moreover the forward rate is i.e. F = 2.70%..

@ In addition, we re-obtain exactly the 2 year swap rate

1 1-0.97371
)= ————-1=2.709 2) = =2.7%.
() 0.97371 e, 5 0.97371 4 0.948111 &
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Example (3. Solving a second-order equation)

Term 0 1 2 3 4 5

F 270%  2.70% = = Fs
DF 1 097371 0948111 P(0,3) P(0,4) P(0,5)
Swap Rate 2.70% 2.70% X X 3.60%

@ Then we have to find Fp,3, F344 and F4,5 and we let F3 to be their common
value.

@ The 3 year discount factor P(0,5) becomes

P(0,3) = P(0,2) m — P(0,2) - x.

— 1
where x = 1_"_7,:31

@ The 4 year discount factor P(0,5) becomes

P0.4) = P(0.2)- 1+F3~1(3—2) ' 1+F3.1(4—3) = PO
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Example

@ The 5 year discount factor P(0,5) becomes

P(0.2)- 1+F3-1(372) ’ 1+F3-1(473) ' 1+F3»1(574)
=P(0,2) - x3

@ We have to recover the quote of the 5-years swap rate by solving
(numerically) the equation

1-P(0,2) - x3
3.60% = ©0.2)
P(0,1) + P(0,2) - (1 4+ x + x2 + x3)
_ 1 _ _ 1 —
Where P(O, 1) = m = 097371, P(0,2) = m = 094811

@ We obtain the 3th order equation

3.60% - (0.97371 +0.94811(1 + x + x° + x3)) =1-0.94811 - x3
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Example

@ Solving numerically, we can find x = 0.95913 and therefore

P(0,3) = 0.94811 - 0.95913 = 0.90937,
P(0,4) = 0.94811 - (0.95913)2 = 0.872205,
P(0,5) = 0.94811 - (0.95913)3 = 0.83656

@ Also the corresponding forward rates are:

Fox3 = F3xa = Faxs = < = 4.2606%

S
0.95913 )

@ In addition, we obtain the interpolated 3 and 4 years swap rates and we
reproduce the 5 years swap rate

S3=3.201%, Ss=3.451,% Ss5=3.60%.
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Example

Term 1 2 3 4 5 6 7 8 9 10
F 2.70% 2.70%  4.261% 4.261% 4.261% Fs Fs Fs Fs Fs
DF 97.37% 94.81% 90.94% 87.22% 83.66% Ps --- . . P1o
A 0.9737 1.9218 2.8312 3.7034 4.5400
3.451% 3.6% X X X X 4.60%

S 2.70% 2.70%  3.201%

o We set

F5 = Fsx6 = Fex7 = Frxg = Fax9 = Fox10

@ We have the equation

P(0,10) =

where S19 = 4.6% and

P(0,

1-— 510 Z?:l P(O, I')

i) = P(0,5)-

@ The solution is F5 = 5.8843%.

14 S99

(1 + F5)"75
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Using a similar procedure we can bootstrap the discount curve up to 25 years.

Start End CFR DF Annnuity Swap
‘ Rate
0 1 2.7000% 0.97371 0.97371 2.7000%
‘ 1 2 2.7000% 0.948111 1.921821 2.7000%
2 3 4.2606% 0.909366 2.831187 3.2013%
3 4 4.2606% 0.872205 3.703391 3.4508%
4 5 4.2606% 0.836562 4.539953 3.6000%
5 6 5.8843% 0.790072 5.330025 3.9386%
6 7 5.8843% 0.746165 6.07619 4.1775%
7 8 5.8843% 0.704699 6.780889 4.3549%
8 9 5.8843% 0.665537 7.446425 4.4916%
9 10 5.8843% 0.628551 8.074977 4.6000%
10 11 5.4000% 0.596348 8.671325 4.6550%
11 12 5.4000% 0.565795 9.237119 4.7007%
12 13 5.4000% 0.536807 9.773926 4.7391%
13 14 5.4000% 0.509304 10.28323 4.7718%
14 15 5.4000% 0.483211 10.76644 4.8000%
15 16 4.8000% 0.461079 11.22752 4.8000%
16 17 4.8000% 0.439961 11.66748 4.8000%
17 18 4.8000% 0.41981 12.08729 4.8000%
18 19 4.8000% 0.400582 12.48787 4.8000%
19 20 4.8000% 0.382235 12.87011 4.8000%
20 21 4.3679% 0.366238 13.23635 4.7880%
21 22 4.3679% 0.35091 13.58726 4.7772%
22 23 4.3679% 0.336224 13.92348 4.7673%
23 24 4.3679% 0.322153 14.24563 4.7583%
24 25 4.3679% 0.308671 14.5543 4.7500%

Table 14: Bootstrapped Discount Curve via Constant Forward Rate Methods
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Figure 6: Constant Forward Rates versus Forward Curve built via linear interpolation of swap rates.
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Question

Let us suppose that:
@ the 5 yrs discount factor is 0.95;
@ the annuity up to 5 years is 4.85;
@ the 5 yrs swap rate is 1.0309%;
@ the 7 year swap rate is 1.08%;

Determine the 7 year discount factor using the linear swap rate and constant
forward rate methods.
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Answer: linear swap rate method

Using the linear swap rate method, we have
@ The 6 year swap rate is 0.01055% (=(1.0309+1.08)/2).

@ The 6 year discount factor is

1—1.055% - 4.85
P = = 0. .
(0.6) 1+ 1.055% 09389

@ The 6 year annuity is
Ag = 4.85 4 0.9389 = 5.7889.

@ The 7 year discount factor is

1—-1.08%-5.7889
1+ 1.08%

P(0,7) = — 0.927463.

@ The last two forward rartes, i.e. 5x6 and 6x7, are equal to 1.1822% and
1.2331%.
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Answer: constant forward rate method |

Using the constatt forward rate method, we have

@ to determine the F5,6 and Fgy7 forward rates and their common value Fq
such that we reobtain quoted swap rates.

@ The 6 and 7 year discount factor are

1
(1 + F6)2-

P(0,6) = P(0,5) - , and P(0,7) = P(0,5) -

1
1+ Fg
@ The equilibrium condition is

1-P(0,7)

1.08% =
% As+ P(0,6) 4+ P(0,7)’

@ Set x =1/(1+ F), so that we have

P(0,6) = P(0,5) - x, and P(0,7) = P(0,5) - x°.
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Answer: constant forward rate method ||

@ Imposing that the discount factors reprice exactly the swap rate, we have

(o, =
B (7

As + P(0,5) - x + P(0,5) - x2'

S7; =1.08% =
or, equivalently

1.08% - (A5 +P(0,5) - x + P(0,5) -x2) —1-P(0,5)x

1—-0.95-x
4.85+0.95- (x + x2)

@ We can solve numerically the above equation and obtain

1.08% =

x = 0.98807
and we can then recover the 6 and 7 year discount factors

P(0,6) = 0.93867, and P(0,7) = 0.927466.
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Answer: constant forward rate method IlI

@ In addition, the forward rates 5x6 and 6x7 are equal to

Fe = 1.2075%.
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Conclusions

@ The discount rates provide the tools by which we can now analyse deals and
dealing positions.

@ The value of any deal in a portfolio will be the sum of the present values of
each individual cash flow of which that deal comprises.

@ However, the discount curve has been computed only at the grid points. In
many cases, cash flows will not fall on the node points.

@ Some methodology for connecting the nodes to calculate discount factors for
all time period is required.

@ Linear interpolation is reputed too inaccurate and significant resources need
to be allocated to provide an interpolation methodology.
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QOutline

0 How to interpolate the spot term structure
@ Linear Interpolation
@ Geometric Interpolation
@ Parametric Interpolation
@ Non-Parametric Interpolation of the discount curve
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Application to trades and positions

@ The discount rates provide the tools by which we can now analyse deals and
dealing positions.
@ The value of any deal in a portfolio will be the sum of the present values of

each individual cash flow of which that deal comprises.

@ However, the discount curve has been computed only at the grid points. In
many cases, cash flows will not fall on the node points.

Therefore, once we have constructed the discount curve at grid points we
would like to extend it to some other points. For example the dates where a
bond pays its coupons.

Some methodology for connecting the nodes to calculate discount factors for
all time period is required.

Linear interpolation is reputed too inaccurate and significant resources need
to be allocated to provide an interpolation methodology.
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Linear Interpolation

@ Let us suppose that after bootstrapping, we have computed P(t, T1) and
P(t, T3), and we are interested in P(t, T), where Ty < T < T».

@ Linear interpolation. Given the discount factors, we choose a compounding
convention, e.g. continuous, and we compute the corresponding spot rates
and then we linear interpolate the spot rate for maturity T and then we get
the interpolated discount factor

1 We linearly interpolate the spot rate

To—T T-T,

=2 ——LR(T, T
R(t.T) = 2= RT.T) + 1 R(T. T2)

where R(t, T) = —In(P(, T))/(T —t).
2. We get the interpolated discount factor

P(t, T) — ef(Tft)R(t,T)

@ In general, this procedure gives a very irregular forward curve.
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Example
@ We are interested in the 70 days discount factor given the information in the
following table

Table 1: Market Information

Days TT™M DF  Spot Rate (c.c.)
60  0.164384 0.999 0.6086%

90 0.246575 0.998 0.8119%
@ We have
90 — 70 70 — 60
= -0.60869 -0.8119% = 0.67649
R(t, t + 70days) = % + 50=70 % %

and then the interpolated discount factor is

P(t, t + 70days) = e~ 35 0-6764% — 0 99870.
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Figure 1: Linearly Interpolated Spot Curve. The Example is detailed in the xlIs file
Fl_bootstrapping.xlsm, Sheet: Interpolation Linear.
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Constant Forward Rate Method

@ Some improvements, it is obtained by constraining the forward curve (daily
tenor) to be piecewise constant.

@ Given the two discount factors, let n to be the number of days between T
and T».

@ We impose that the daily forward discount factor to be constant and equal to
X, so that

n i—1 i
P(t, To) = P(t, T Pt Ti+ o= T1+ o) =Pt T1) x"
(t, T2) ( 1)i|71| ( 1+ 358 1+365> (t, T1)-x

1
e, x = (gg:%g) " and then we compute

P(t, T)=P(t, T1)-x"

where m is the number of days between T7; and T.
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Example

@ We are interested in the 70 days discount factor given the following

information
Days TTM DF  Spot Rate (c.c.)
60  0.164384 0.999 0.6086%
90  0.246575 0.998 0.8119%

@ The two discount factors are 30 days apart. We compute the daily forward
discount factor

S

0

= 0.999966617

0.998
P(t,t+ (i — 1)days, t + idays) = ( )

0.999

@ The interpolated discount factor is 20 days apart from the first discount
factor. So

P(t, t + 70days) = 0.999 - (0.999966617)° = 0.998333.

@ The interpolated spot rate is

R(t, t+ 70days) = — M(PELT0ds)) . (0.998333) — 0.8698%.
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Figure 2: Interpolated Spot Curve using the Piecewise Constant Forward Method. The Example
is detailed in the xIs file Fl_bootstrapping.xlsm, Sheet: Interpolation Cst Fwd.
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Interpolating the discount curve

@ Two more general approaches have been proposed: the parametric and the
non-parametric methods.

@ The first method models the forward curve by a parametric function. The
parameters are fitted using a minimization routine.

@ With the non-parametric method, we use a piecewise polynomial function
(e.g. a piecewise cubic polynomial), and we join the so-called knot points,
where the function and its first derivative are continuous. The polynomial is
eventually constrained to guarantee some smoothness in the forward curve.

@ loannides (2003) provides a detailed comparison among the different
estimation techniques.
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Interpolating Discount Curve via Parametric
Approach

@ A popular approach is to postulate a parametric functional form for the
bootstrapped discount curve P(t, T;8) as function of time to maturity and
some parameter set 6 and we use the market observed discount curve to
estimate (calibrate) the parameters of this functional form.

@ One popular parametric model is the Nelson&Siegel model (1987), for
which the discount curve is assumed to be as follows

Pns (t,t4+7;0) =exp(—T X Rys (¢, t+T;0)) .
where the continuously compounded spot rate is defined according to

Rys (t,t+17;0) = Bo + <,31+ﬁk2> %ﬂ—%exp(—’tk),

b~k
—z

where 0 is the vector of unknown parameters.

0 = {Bo. B1. B2, k}.
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Interpreting the Nelson-Siegel parameters

@ In the Nelson-Siegel model Bg, B1, B2 and « are the parameters to be
estimated.

@ In particular, the short and long end of the curve are related to the NS
parameters:

> Bo specifies the long rate to which the spot rate tends asymptotically
lim R - 0) = Bo.
-rl—>moo NS(tv t+ T, 9) Bo

» P is the weight attached to the short term component (spread
short/long-term)
lim RNs(t, t+ T, 3) = ‘BQ + ﬁl-
70

> B2 is the weight attached to the medium term component.
> k measures the point of the beginning of decay.

@ You can figure out how the different parameters affect the shape of the term
structure playing with the Excel file FI_FittingNelsonSiegel.xls sheet
NelsonSiegel.
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Calibrating the Nelson-Siegel curve to swap market

@ Given the constructed discount curve at the n market grid points, compute
the continuously computed spot rate Rk (t, t + 7) and choose the
parameters that minimize some distance function between R (t,t+ T)
and Rys (t, t+ T;0):

n
min Y. wi (Rus (t.t +Tii 8) — Ronge (£, £ + 7)) .
i=1

@ The fitting could also be defined in terms of price rather than yield errors.
n

Z PNS t t+T;; 6) — Pkt (t,t+T;))

2

@ This is the preferred approach when we deal with bond markets data.

@ The weights w; can be chosen equal or to give more importance to specific
maturities (eg. the most liquid ones).
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Case Study

Excel File: FlgittingNelsonSiegel
Excel sheet: FittingBootstrappedCurve
Aim:
© Bootstrap market discount curve;
@ Interpolate the discount curve;

© Price a bond expiring in 5 years with quarterly payments. Coupon rate
is 1.50%.
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Figure 3: Interpolating the Nelson-Siegel curve using the Excel Solver
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Figure 4: Market and interpolated spot rates.

nluca Fusai (2019-20) Bootstrapping Term Structures SMM269 17 /36




1074

5 [~ ]

joli]

£

A

5 11 I

oo - I- -

2 I““I I||||
—5 ‘ ‘ —

0 10 20 30

Years

Figure 5: Difference between Market and Fitted spot rates.
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Bond Pricing

T Cpn Tenor Cpn Rate Cash Flows Spot Rate NS DF NS  PV(CF)
0.25 0.25 1.5 0.375 0.46% 99.89% 0.374571
0.5 0.25 15 0.375 0.53% 99.73% 0.373999
0.75 0.25 1.5 0.375 0.61% 99.55% 0.373295
1 0.25 15 0.375 0.68% 99.32% 0.372468
1.25 0.25 1.5 0.375 0.74% 99.07% 0.371528
15 0.25 15 0.375 0.81% 98.80% 0.370482
1.75 0.25 1.5 0.375 0.87% 98.49% 0.36934
2 0.25 15 0.375 0.93% 98.16% 0.368108
225 0.25 1.5 0.375 0.98% 97.81% 0.366796
25 0.25 15 0.375 1.04% 97.44% 0.365408
275 0.25 1.5 0.375 1.09% 97.05% 0.363952
3 0.25 15 0.375 1.14% 96.65% 0.362433
3.25 0.25 1.5 0.375 1.18% 96.23% 0.360858
35 0.25 15 0.375 1.23% 95.79% 0.359231
3.75 0.25 1.5 0.375 1.27% 95.35% 0.357558
4 0.25 15 0.375 1.31% 94.89% 0.355842
4.25 0.25 1.5 0.375 1.35% 94.42% 0.354089
45 0.25 1.5 0.375 1.39% 93.95% 0.352302
4.75 0.25 1.5 0.375 1.42% 93.46% 0.350485
5 0.25 1.5 100.375 1.46% 92.97% 93.31955
PV 100.2423

Figure 6: Pricing the coupon bond using the

i (2019-20)

=NelsonSiegelSpot($J$4;$$5:$J$6:5J$7:B41)

=EXP(-F44*B44)

=GAT"E4T

interpolated Nelson-Siegel curve

Bootstrapping Term Structures

SMM269

19/36



Calibrating the Nelson-Siegel curve to Bond Prices

@ For a given set of parameters, we can compute the bond price implied by the
NS model

Bus(ct. T;0) = ) < x e~ (Tt Rus(E.Ti0) 4 o= (Tomt)xRus(6.72.0)
j=1m
© For the same bond, we have the invoice price quoted in the market
Bmkt(c, t; T)
© For each given set of parameters 8 and considering bonds with different
maturities, we can compute the mean-square error

MSE (6) = i (Bmie(c, t: T;) — Bus(c, t, Ti:6))?.
i=1

© The procedure is then to find parameters 0 such that the MSE is minimized
0 : argminMSE (0)

@ This is the approach followed by the European Central Bank.!

1BCE, Technical Notes,
http://www.ecb.europa.eu/stats/money/yc/html/technical_notes.pdf.
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Case Study

Excel File: FlgittingNelsonSiegel

Excel sheet: FittingBondPrices

Aim:
© Build the Bond Cash Flow Matrix;
@ Price the Bonds according to NS;

© Minimize the Sum of Squared Errors.
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Example (1. The Cash Flow Matrix)

Table 2: Bond Cash Flows

Cash Flows |

Bond  Gross Price | 1 2 3 4 5 6 7 8 9 10 |
1 95.6 1 101 0 0o 0 0 0 0 0 0
2 93.4 12 12 1002 0 0 0 0 0 0 0
3 95.1 25 25 25 1025 0 0 0 0 0 0
4 927 28 28 28 28 28 1028 0 0 0 0
5 929 3 3 3 3 3 3 13 0 0 0
6 925 31 31 31 31 31 31 31 1031 O 0
7 87.1 25 25 25 25 25 25 25 25 1025 0

8 101.8 |45 45 45 45 45 45 45 45 45 1045
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Example (2. Assign Initial Values to the NS parameters)
Table 3: Starting values of the NS model and corresponding NS discount curve

NS Parameters TTM NS Discount

Bo 0.04 1 0.97384

B1 -0.02 2 0.93813

B2 0.015 3 0.89861

K 0.45 4 0.85852

5 0.81957

6 0.78255

7 0.74771

8 0.71505

9 0.68444

10 0.65570
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Example (3. Reprice Bonds using the NS Discount Curve)

We can compute NS bond prices via the matrix product
CF - DFps

where: CF is the NxM cash flow matrix (in our example N=nr. of bonds=5;
M=number of maturities=10) and DFps is the Mx1 vector containing the NS
theoretical bond prices.

Bond Bond Price NS Price  Pricing Error  Weigth  Error?

1 95.6 95.0977 0.5023 1.0000 0.2523
2 93.4 92.3974 1.0026 1.0000 1.0053
3 95.1 94.0933 1.0067 1.0000 1.0135
4 92.7 92.1984 0.5016 1.0000 0.2516
5 92.9 92.1200 0.7800 1.0000 0.6084
6 92.5 91.784933 0.7151 1.0000 0.5113
7 87.1 86.531125 0.5689 1.0000 0.3236
8 101.8 101.41661 0.3834 1.0000 0.1470
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Example (4. Execute the Minimization of the SSE (e.g using Excel Solver))
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Figure 7: Setting up the minimization using the Excel Solver
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Example (5. Check the results )
Table 5: Results of the calibration of the Nelson Siegel Model

NS Parameters Bond Bond Price NS Price  Pricing Error  Weight Error?
Bo 0.03879 1 95.6 95.7206 -0.1206 1.0000 0.0145
B1  -0.02002 2 93.4 93.2307 0.1693 1.0000 0.0287
B> 0.01199 3 95.1 95.0228 0.0772 1.0000 0.0060
k  0.33035 4 92.7 93.0118 -0.3118 1.0000 0.0972
5 92.9 92.8248 0.0752 1.0000 0.0057

6 925 92.377719 0.1223 1.0000 0.0150

7 87.1 86.988895 0.1111 1.0000 0.0123

8 101.8 101.90422 -0.1042 1.0000 0.0109

SSE 0.1902
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Example (5. Check the results: Pricing Errors)

105
100

a5

o0
B85
B0
75
1 2 3 4 5 3 7 -]

mBond Prce  m NS Price

Figure 8: Market and Model Bond Prices
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Example (5. Check the results: Bond Prices )
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Figure 9: Errors in repricing the bonds
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Example (5. Check the results: The Nelson Siegel fitted curve)
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Figure 10: Fitted Nelson-Siegel curve
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Case Study: Calibrating the Nelson-Siegel curve to

the BTP market

Excel File: FlgittingNelsonSiegel

Excel sheet: CaseStudy Bond Fitting

Aim: Fitting the Nelson Siegel model to market bond prices
© Build the Bond Cash Flow Matrix;
@ Price the Bonds according to NS;

© Minimize the Sum of Squared Errors.
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Curve Fitting
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Curve Fitting

Nelson Siegel Spot Term Structure
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Parsimonious Models — Pros and Cons

@ We can capture as much as possible of the term structure with a few
parameters as possible.

@ There is a balance between goodness of fit on the one hand and parsimony
on the other: they lack of flexibility, i.e. cannot account for all possible
shapes of the TS we see in practice.

@ Alternative approach like spline models are more flexible, better for pricing
but much less parsimonious.
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Cubic Spline

@ The cubic spline parameterization was first used by McCulloch (1971) to
estimate the nominal term structure. He later added taxes in McCulloch
(1975).

@ The methodology is described for instance in Fabozzi, Interest rate, term
structure, and valuation modeling, from page 158 to page 183.

@ The interpolating function is a piecewise cubic function.

@ The cubic function is chosen to guarantee continuity up to the second
derivative of the spot curve at joining points.

@ A Youtube presentation can be found at
http://wn.com/Fit_Treasury_yield_curve_with_cubic_polynomial.
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(@©Gianluca Fusai (2019-20) Interest Rate Modelling: Issues SMM269 2/13



General Requirements for a model

Accurate Valuation of Simple Market Instruments

Easy calibration to the market

°
°
@ Robustness, i.e. the model should perform well in all markets
@ Extensibility to new instruments

°

Stability of floating parameters
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The Uses of Interest rate models

Pricing and hedging
Risk Management

Explaining interest rate movements.

So we will need techniques for

o Describing interest rate movements
o Obtaining prices from models
o Estimating parameters
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Basic Steps

Decide upon the state variables (which and how many):

o bond price, short rate, spot rate, fwd rate
o "pure’ state variables
e economic variables from equilibrium considerations.

Decide upon the dynamics of the state variable:

e e.g. discrete/continuous.
o diffusion/jump.

Decide upon an appropriate valuation method

e analytical, numerical, simulation.

Decide upon the parameter estimation method

o in which way and to what calibrate the model to market prices.
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Criteria for Model Selection

o Fitting market data

o the current term structure
e current caplet/bond option prices
e current volatility structure (e.g. the t.s. of bond option implied volatilities).

@ Good dynamics, such as:

@ mean reversion and volatility of the short rate
@ non-negativity of interest rates
e number and shapes of the future term structures

o Tractability: o Hue m/wv@@.(g/ ealnon ¢

o analytical solution for basic instruments
o simple numerical solution for exotic derivatives.
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Basic models

@ Affine yield models (Duffie and Kan, 1994)
o generalize to n variables the short rate models of Vasicek and CIR.

e Consistent models (Heath, Jarrow and Morton, 1992 and Black, Derman and
Toy, 1990):

o allow for perfect fit of the term structure of interest rate and of the term
structure of volatility.

@ Market models (Brace et al. 1997 and Jamshidian 1996):

o the state variables are market quoted rates and justify the use of the Black
model in the common practice.
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Term Structure vs. asset price modelling

@ We need to model a structure of prices.

@ We need to model in a consistent way zcb with different expiry (no arbitrage
across maturities).

@ We need to satisfy the maturity constraint P (T, T) = 1.
@ The volatility of bond prices behaves differently from asset price volatility:

pricevolitility

0sT
03751
nast

0125T

Figure: zcb volatility (blue line) vs. stock volatility (dotted line)
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Term Structure Dynamics vs. Stock Price Dynamics

Historical Evolution of the TS: deformations

Historical Evolution of an asset price: price variations
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The term structure of interest rate volatility

w107 Std. Dew. of absolute changes of swap rates
6.5 T T T

7 1 1 L L 1
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Correlation of changes in rates

Table: Correlation of changes in the US yields

1Yr 2 Yr 3Yr 5Yr 7 Yr 10Yr 20Yr 30 Yr
1Yr 100% 75% 74% 71% 67% 62% 56% 52%
2 Yr 75% 100% 94% 91% 87% 82% 73% 68%
3Yr 74% 94% 100% 96% 93% 90% 81% 76%
5Yr 71% 91% 96% 100% 98% 95% 88% 83%
7 Yr 67% 87% 93% 98% 100% 98% 93% 89%
10 Yr 62% 82% 90% 95% 98% 100% 96% 93%
20 Yr  56% 73% 81% 88% 93% 96% 100% 97%
30 Yr  52% 68% 76% 83% 89% 93% 97% 100%
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Which quantity to model?

@ The instantaneous short rate;
@ The term structure of instantaneous forward rates;
@ The term structure of simple forward rates;

@ The term structure of discount factors.
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Choosing the state variables

@ Let us recall the basic relationship for continuously compounded interest

rates:
P(t,T) R(t,T) F(eT)
P(t, T) - e RET)(T—1) = f 7(t.s)ds
R(t, T —PET) - RO
R(t,T)+
dln P(t, ,
f(t, T) —2n A6 T) (7 ¢ o i
r(e) | -] R(t.t) £t 1)

@ Which variable is convenient to model?
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Outline |

© Main quantities
@ Instantaneous rate
@ Money Market Account

© Pricing with stochastic interest rates

e Money Market Account and zcb pricing

@ Exogenous short rate models

9 Appendix
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Interest rate modelling

@ In order to price non linear derivatives, we need to introduce a stochastic
model for interest rates.

@ Which variable should we model?

Short rate r¢;

Instantaneous forward rates f (t, T);
Libor rates L (t, T);

Forward Libor rates F (t, T;_1, T;);
Forward swap rates S (t, To, Th);
Zero coupon bond prices P (t, T);
Other key variables???
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Overview of the classical approach !

1977: Short rates = Endogenous short rate models
1990: Short rates = Exogenous short rate models
1990: Instantenous forward rates = HJM models

1997: Forward market rates (forward Libor rates, forward swap rates) =
Market models

2002: Volatility smile extensions of forward market-rates models:

o Local volatility models (e.g. CEV model)
o Stochastic volatility models (e.g. SABR model)

1Brigo, Columbia University Seminar, Paradigm shifts in recent years; 2007

(@©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269 5/110



Instantaneous rates

@ Instantaneous spot and forward rates do not exist as traded quantities in the
market.

@ They are convenient theoretical concepts used for modelling purposes: the
math is simpler.

@ The first term structure models were short rate models, i.e. models assigning
the dynamics of the instantaneous spot rate.

@ The second generation term structure models, the so-called HJM models,
were models assigning the dynamics of the instantaneous forward rate.
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Instantaneous spot rate

@ Consider the continuously compounded spot rate:
InP(t,T)
T—t

@ By letting A — 0, we define the instantaneous spot rate (or short rate):

R(t, T)=

r(t) = AIirﬁnor(t,t—i-A)

. InP(t,t+A)—InP(t, 1)
= — lim
A—0 A
_AInP(tT)
aT T—t

@ Note that the (instantaneous) short rate r(t) does not depend on the
maturity T any longer.

@ r(t) represents just a point on the term structure of spot rates: it is the
intercept on the vertical axis.
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The money market account

@ Let us suppose to invest a unitary amount in a bank account with an
instantaneous accruing rate r (t).

@ The amount B (t) available in the bank account at time t growths according
to the equation

@ Solving the ordinary differential equation, we get an expression for the money
market account at time T given an initial investment at time t.
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Deterministic vs. Stochastic

Deterministic world

P(t,T) = e Ji rs)ss,
ftTr(s)ds
R(t,T) = ﬁ'
f(t,T) = r(T).
P(t,T) = E. {e* i f<5)d5] ,
R(t,T) = —Tl_tm]Et [e‘ffr(s)dS],
dInE, {e‘ftT r(s)ds]
f(e,T) = — 5T

A\
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Pricing with stochastic interest rates

No-arbitrage pricing

Bond prices are arbitrage free if and only if there exists a measure (the risk-neutral
one), under which, for each T, the discounted price process P (t, T) /B (t) is a

martingale:  Qe(atie P&
P(t

@ Using the fact that P (T, T) = 1, we have:

Pricing formula for zcb
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The short rate approach

@ How to use the relationship

P16 =B () = (1 70):

© Assign the dynamics of the short rate r(s),t < s < T, under the risk-neutral
measure. .
@ Compute the distribution of [’ r(s) ds.

o0 T — [T r(s)ds
© Compute the expectation E; (e J .

@ This is indeed the approach followed in first term structure models, Merton,
Vasicek and CIR, that make some assumption on the stochastic behavior of
the short rate and then find P (t, T).

@ A more modern no-arbitrage approach takes as given the discount curve and
the volatility surface (and equal to the market quotation) and looks for a
dynamics of market observable quantities that is consistent with such
quotations.
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Short Rate Models (or equilibrium models)

,r

Merton (1974) proposes a model for the instantaneous rate r (t) based on
the arithmetic Brownian motion. (‘jn@j pmrc\t@[ g}\ﬁﬁ

Vasicek (1977) constructs a model for the instantaneous rate r (t) allowing
for mean-reversion.

@ Successive models, e.g. Cox, Ingersoll and Ross (1985), concentrate on
this variable looking for more realistic models (e.g. non-negative interest
rates, multifactor models, etc.).

@ These models, named equilibrium models, cannot replicate the observed
zcb prices. This is called the consistency problem.

They can be used to find out mispriced zcb prices, but are useless in pricing
interest rate derivatives.
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Framework of short rate models

@ We assign an Ito diffusion to the short rate, under the risk-neutral measure:
dr(t) = u(t, r(t))dt +o(t, r(t))dW(t),

where

o u(t, r(t)) is the drift coefficient,
e o(t, r(t)) is the diffusion coefficient,
e dW/(t) is the increment of the Wiener process, i.e.

dW (t) ~ N (0, dt) .
@ The zcb dynamics under the risk-neutral measure is:
dP(t, T) = r(t)P(t, T)dt +v(t,r(t))P(t, T)dW(t),

@ All contingent claims can be priced by taking risk-neutral expecations of their
discounted payoff.

@ This can be accomplished relatively easily for the so called affine class of
models.

(@©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269 13 /110



Framework of short rate models

@ Dynamics

dr(t) = wu(r,t)dt+o(r.t)dW(t)
r(t) = r (with r given)

@ Pricing
P(r(t);t, T) = IE; (ef ffr(s)ds)
Clr(t)it, T To) = B (max(P((Ta)i Tu, To) = K;0) e I o))

@ The problem of consistency between model and market prices arises, because
in general

P(r(t);t, T) # P™< (¢, T)
C(r(t);t, T1, To) # C™ (¢, Ty, To)
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Pricing a zcb with short rate
models
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Example (1. Pricing zcb using the RN measure)

@ Let us consider a pure discount bond, whose payoff is: v(T) = 1.
@ Let us use the money market account as numeraire.
@ The current price P(t, T) of the zcb is therefore:

P(t,T) =, <exp (— /tTr(s)ds) x 1) .

@ This is the approach used in short rate models, where a risk-neutral dynamics
is assigned to the short rate

dr(t) = u(r, t)dt +o(r, t)dW(t).

@ Then the zcb price can be found if we know the moment generating function
(MGF) of the time integral

I(t, T) = /tTr(s)ds,

i.e. if we are able to compute |E; (exp (—/(t, T))).
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% fack of (angictincy With parkec [t

Example (2. Pricing zcb using the RN measure)

@ The procedure gives closed form expression for zcb prices depending on the
choice of the drift and diffusion coefficient.

Table: Legend: HW: Hull & White, CIR: Cox-Ingersoll-Ross, MR-LN: me‘n—revertif lognormal.

Usefed s \owtify. orerpriad o wndby pried bon

Model V0T Oﬁfﬁa?? "W Dlffusion ' Distr of r(s)  Distr of I(t,T) MGF of /(f).

Merton o Gaussian Gaussian
Ho & Lee r}'m (t) o Gaussian Gaussian
VaS|cek (t ) o Gaussian Gaussian
r(t)) o Gaussian Gaussian
CIR ( (t)) o+/r(t) w Unknown
Dothan ur(t) o % r(t) Logrorma Unknown X
MR-LN a(p—r(t)) o x r(t) Unknown Unknown X

@ The above Table shows that only for some model (Merton, HL, Vasicek, HW
and CIR) the zcb price is available in closed form. Therefore, their popularity
at least in the academic literature.

@){W\eﬁ o WW{‘D :fo\({f,of S%o/f rote WDQW

weon A Ll e O
%hblﬁrestmodeﬁ <en /J/@/W ot Perfesym269 17/110
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Some key issues |

@ Distribution of the short rate

@ Positivity of interest rates

@ Analytical formula for bond prices

@ Analytical formulas for bond options/cap/swaptions

Mean reversion

Implied volatility structures
Correlation structure
Suitability for Monte Carlo simulation

Suitability for recombining lattices

Market fit (bond prices/cap/swaptions)
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Some key issues Il

Example (3. Key Issues)

Table: Main facts about one-factor short rate models

Model Distribution Positivity ZCB Pricing Caplets/Swaptions Mean-Reversion Factors Consistency
Merton Gaussian No Yes Yes No 1 No
Vasicek Gaussian No Yes Yes Yes 1 No

CIR Non-central )(2 Yes Yes Yes Yes 1 No
Dothan ? Yes No No No 1 No
MR Log ? Yes No No Yes 1 No
MR CEV ? Yes No No Yes 1 No
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Example (1. A Case Study: the Merton model)

@ The sde

dr(t) = pdt + cdW(s).
@ The solution
r(s) =r(t)+u(s—t) —l—o*fts dW(u) ~ N (r(t) +u(s— t),0?(s — t))
@ This means that if u % 0 the short rate can increase (in absolute value)
without limits.

@ Also, its variance growths linearly with time.

@ On the other side, this model allows to perform analytical calculations.
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Example (2. The distribution of jt s)ds)

@ Integrate

_ )2 s
/tTr(s)ds: r(t)(r—t)ﬂl% +a/tT/t dW (u)ds

@ It can be shown that

/tTr(s)ds ~ N (M(t, T), V(t, T)),

where M(t, T) = r(t)(T — t) + 5(T —t)2 and V(t, T) = & (T — t)3.
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Example (3. Pricing zcb in the Merton model)

@ Given that ftT r(s)ds ~ N (M(t, T), V(t, T)), using the moment
generating function of a Gaussian r.v., it follows that the price of a zcb is
given by

P(t,T) = I, (e—ftTr(s)ds) _ (Tt =B (T2 % (T8 (1)

@ In addition, the term structure of spot rates R(t, T) is given by

In(R(t, T)) o?
=)+ 5 (T = 1) = (T =12

R(t, T)=— g

N =

@ The coefficient of r(t) is equal to 1, this means that
e The term structure of volatility is flat: all rates have the same volatility.

SDevi(dR(t, T)) = SDev;(dr(t)) = oV dt
o The correlation between changes of rates with different maturities is perfect

Corrt(dR(t, T1), dR(t, T2)) = 1.

e This correlation is 1 in all one-factor (short rate) models.
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Market Data: Volatility of changes in spot rates

Table: Standard Deviation of daily changes in US yields

Tenor
1 Mo
3 Mo
6 Mo
1Yr
2 Yr
3Yr
5 Yr
7 Yr
10 Yr
20 Yr
30 Yr

(@©Gianluca Fusai (2019-20)

2019
3.15%
2.17%
2.09%
2.54%
3.82%
3.94%
4.08%
4.14%
3.96%
3.85%
3.77%

2010
1.46%
1.02%
1.03%
1.56%
3.77%
4.72%
6.33%
6.69%
6.57%
6.50%
6.32%

2007
16.98%
11.21%
7.01%
6.19%
6.74%
6.58%
6.33%
5.90%
5.28%
4.72%
4.61%

Interest Rate Modelling

2005
9.58%
5.00%
7.18%
8.98%
9.50%
7.30%
6.25%
5.10%
4.60%
4.60%

n.a.

SMM269
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Affine one-factor short rate models |

@ In Affine models bond prices formula are available in closed form and are of

the form
P(t, T) = e~ At T)=r(t)B(t,T)

for some smooth functions A and B, with A(T, T) = B(T, T) = 0 (why?).

@ The above formula holds if and only if, for some continuous functions a, b, c,
and d, the following restrictions on the diffusion and drift terms hold

o?(t) = a(t) + b(t)r(t), and u(t, r(t)) = c(t) + d(t)r(t),

for example few examples of one-factor affine model with constant
parameters are

Model Drift Diffusion
Merton U o
Vasicek a(p—r) o

CIR a(p—r) a\/r
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Affine one-factor short rate models IlI

A state
Variable\

A High values of the
% | state vaniable:

\ there is a tendency
to decrease

_Reversion
Level
4 Low values of the
/" | state variable:
/ there is a tendenc:
/ to increase
Time

Figure: Mean reversion and expected change in the short rate
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Affine one-factor short rate models

@ The following Table provides the most important examples of one-factor
affine models with constant parameters

Model Dynamics dr B(t, T)
Merton pudt + ocdW T—t
Vasicek a(p—r)dt+odW leT9

2(e¢1(7g—t)_1)
CIR a(p—r)dt+oyrdW ¢2(eM (70 —1) 429
<P1=\/m; P = P1 +u

@ The expressions for the functions A(t, T) are given in the Appendix.
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Not Affine Models

@ Examples of one-factor not affine models are provided in the following table

Model Dynamics

Dothan dr = Ardt 4+ ocrdW
MR-Lognormal  dr = a (u — r) dt + ordW
MR-CEV dr =a(p—r)dt+orf/2dw.

@ For these models, no simple analytical formula for zcb prices are available and
numerical methods are required.

@ This fact makes their use very limited in practice.
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Multi-factor extensions

One of the main limits of the Vasicek and CIR models is the perfect
correlation among changes in spot rates with different maturities.

Several extensions have been suggested in the literature.

Two examples are the Balduzzi, Das, Foresi and Sundaresan (BDFS) model
and the Fong and Vasicek model.

They allow for a stochastic drift and stochastic variance and they are
presented in the Appendix.
The most general class of short rate models that are analytically tractable

and allow for multifactor extension belong to the affine class as discussed in
Duffie and Kan (1994).

(@©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269 28 /110



Calibrating short rate models |

rEsﬁmam Parsameters l

v

Calculate values for

. a set of raded
bonds and options

basad Oon parameoetars

¥

Compare calculated ?‘?.::i?':::
wvalues with
further
market values improvement
‘ possible

Adjust valuea of
Parameters

Figure: The calibration procedure
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Calibrating short rate models Il

@ Once we have the pricing formula, we have to choose the model parameters.

@ This step is called calibration: we adjust model parameters in order to make
the model prices to fit market prices.

@ For example, we can try to solve

@ a minimization on the difference of weigthed squared market prices
2
mkt model
ar;ln;wr; (P (t, )= P (tTwyUr))
@ a minimization on the difference of weigthed squared spot rates
2
ar;r)l(pr Z (Rmkt (t, T;) — Rmodel (t, T, 0, r)) .

@ In both cases, the weights w; are set equal to 1 or are chosen to give greater
importance to short maturities (eg w; = ﬁ) or
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Example (Case Study: Calibration of the Merton Model - Framework)

@ In the Merton model, spot rates are linear in the model parameters (see ()),
so we can recast the minimization problem as an OLS problem

R=XB+e¢

where R is nx1 the vector containing the observed rates for different tenors, X
is a nx3 array having as first column 1, as second column the (T; — t)/2 and
as third column —(T; — t)2/6 and B it the vector of unknown parameters,
i.e. r,ju,0%. € is the vector of errors, given that the model is not exact.

@ We can estimate j via

A

B=(X'X)"IX'R

@ The estimated error is given by

and their estimated variance is
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Example (Case Study. Calibration of the Mert odel: Results (1))
Excel file: FI_ShortRateModels; Sheet: Calibration Merton Model
Tenor T R(t Merton Error

0.08333 1.54% 1.54% 0.00% 1 0.04167 -0.001

0.16667 1.58% 1.54% 0.04% 1 0.08333 -0.005
0.25 1.57% 1.55% 0.02% 1 0.125 -0.010
0.5 1.57% 1.56% 0.01% 1 0.25 -0.042
1 1.52% 1.58% -0.06% 1 0.5 -0.167
2 1.62% 1.62% 0.00% 1 1 -0.667
3 1.65% 1.66% -0.01% 1 15 -1.500
5 1.73% 1.75% -0.02% 1 25 -4.167
7 1.84% 1.82% 0.02% 1 3.5 -8.167
10 1.92% 1.93% -0.01% 1 5 -16.667
20 2.21% 2.20% 0.01% 1 10 -66.667
30 2.35% 2.36% -0.01% 1 15 -150.000

R

12 39.5 -248.0579 0.2110

39.5 372.087 -3042.012 0.8335

-248.06 -3042 27309 -5.5797

(x'x)~ B=(x'x)"Ix'R

0.1816 -0.0648 -0.0056 P 1.536%

-0.0648 0.0533 0.0053 fl 0.0895%

-0.0056 0.0053 0.0006 (”72 0.0000

v
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Example (Case Study. Calibration of the Merton Model: Results (2). )

@ We also have that

s2 =7.3824-10"%.

@ The standard errors of the OLS estimates are

SDev (ﬁ) = s/ diag ((X'X)~1)

@ In our numerical example, we have

2

QDPTS o

B=(X'X)"'X'R s.e.

1.536% 0.0001

0.0895% 6E-05
0.0000 TE-06
0.0059 0.00055

t-stat

132.665
14.2693
5.32127
10.64254
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Example (Case Study. Fitted Model)

3.00
2.00 |- =
X
Q
o
o
1.00 - 4
—e— Market Rates %
-m—  Merton %
| | | |

0'000 5 10 15 20 25 30
Maturity (yrs)

Figure: Calibrated Term Structure of Yields
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Example (Case Study. Fitted Model)
1072 |
4 00 Error % |

: hEp B [
£ _o N
4 |
— 6 L |

0 é 1‘0 1‘5 2‘0 2‘5 30

Maturity (yrs)
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Calibration of the Vasicek Model

Excel file: FI_ShortRateModels; Sheet: Calibrating Vasicek (Euribor)

Calibration of the Vasicek model

Vasicek parameters

Data: Euribor rates

Source: www.euribor.org r 4.2947%
n 8.0856%
® 1.9579
Trade Date 12/09/2008 [ 0.5078
Settlement Date 16,/09/2008 SSE 4.615E-06
. Adjusted Time to Pricing
R Maturity Maturity Error
1w 23/09/2008 23/09/2008 0.0194 4.401 4.36% 0.03%
2w 30/09/2008 30/09,/2008 0.0389 4.422 4.43% -0.01%
3w 07/10/2008 07/10/2008 0.0583 4.506 4.49% 0.01%
1im 16/10/2008 16/10/2008 0.0833 4.516 4.56% -0.05%
2m 16/11/2008 17/11/2008 0.1722 4.764 4.77% -0.02%
3m 16/12/2008 16/12/2008 0.2528 4.958 4.90% 0.02%
4m 16/01/2009 16/01/2009 0.3389 5.103 5.01% 0.05%
5m 16/02/2009 16,/02/2009 0.4250 5.147 5.08% 0.01%
6m 16/03/2009 16,/03/2009 0.5028 5.185 5.12% 0.00%
7m 16,/04/2009 16,/04/2009 0.5889 5.202 5.15% -0.03%
8m 16/05/2009 18/05/2009 0.6778 5.229 5.17% -0.03%
9m 16/06,/2009 16/06,/2009 0.7583 5.256 5.18% -0.02%
10m 16/07,/2009 16/07/2009 0.8417 5.285 5.18% -0.01%
11m 16/08/2009 17/08/2009 0.9306 5.307 5.17% 0.01%
12m 16/09/2009 16/09/2009 1.0139 5.341 5.17% 0.03%
B (0 W ETAFAEES
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5.30%
5.20%
5.10%
5.00%
4.50%
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—s—Rmktit,T) —e— Rvagt,T)

Figure: The fitted market curve using the Vasicek model
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Figure: Calibrating errors using the Vasicek model: Market Rates-Model Rates
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Pricing via Monte Carlo Simulation

@ The analytical pricing of a zcb can be difficult for some model.
@ In such a case we can use Monte Carlo simulation.
@ We should proceed as follows
@ Discretize the life of the zcb using time-intervals of size A, so that time s is
given by
s=t+jAj=0---,N
and t+ NA =T,
Simulate a path i for the short rate r(/)(s) at the discrete times s;
Given the simulated path, compute the integral of the path ft s)ds by
approximating the integral using the trapezium rule

. () ) ()
1D(¢, T) = (r + Z )(t+jA) +r(t+NA)> A.

©0

2

@ Exponentiate and compute

| NV Penf of
B, T)=€""T)  yaa
@ Repeat for i =1, ..., M and average the discounted payoff of the zcb over M
simulations:
PMC (¢, T) = Lgn 1
' M = BO(t, T):
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Example (Pricing zcb via Monte Carlo simulation)

@ Let us suppose we have simulated 1000 paths of the short rate accordingly to
our preferred interest rate model (e.g. Vasicek model) at monthly steps up to

6 months.
Sim. -Time 0 1/12 2/12 3/12 4/12 5/12 6/12
1 5% 4.4254% 3.7358% 4.3639% 4.1322% 3.8130%  3.9584%
2 5% 4.4375% 4.6937%  4.3902% 4.2765% 4.3875%  4.0319%
1000 5% 4.7326% 4.1561% 4.4195% 4.0881% 3.5899% 3.7135%

Table: Simulated Trajectories of the Vasicek model with &« = 0.1, y = 4%, 0 = 1%, ro = 5%.
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Example ((...continued) Simulating the Money Market account)

@ Then we can simulate the integral of the short rate by discretizing the

integral using the trapezium rule

ut 1y r(w) +r(u+ ) 1
12
r(s)ds ~ X —,
/u () 2 12
and, in our example, u =0,1/12,2/12,--- ,5/12.
@ Therefore, we obtain simulated paths of the integral
Sim.-Time 0 1/12  2/12  3/12  4/12  5/12  6/12
Sim 1 0 0.0039 0.0073 0.0107 0.0142 0.0176 0.0208
Sim 2 0 0.0039 0.0077 0.0115 0.0151 0.0187 0.0223
Sim 1000 0 0.0041 0.0078 0.0113 0.0149 0.0181 0.0211

@ For example the bold cell in the second simulation has been computed

according to

1 4.6937% + 4.3902%

1(0,3/12) = 1?(0,2/12) + 7 %

2

= 0.0115.
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Example ((...continued) Estimating the zcb price)

@ Simulated

Table: Integral of the short rate /(t, T)

‘ Time 0 0.083333 0.166667 0.25 0.333333  0.416667 0.5 ‘
Sim 1 0 0.0039 0.0073 0.0107 0.0142 0.0176 0.0208
Sim 2 0 0.0039 0.0077 0.0115 0.0151 0.0187 0.0223
Sim 1000 O 0.0041 0.0078 0.0113 0.0149 0.0181 0.0211
Table: Paths of the money market account
‘ Time 0 0.083333 0.166667 0.25 0.333333 0.416667 0.5 ‘
Sim 1 1 1.0039 1.0074 1.0108 1.0143 1.0177 1.0210
Sim 2 1 1.0039 1.0078 1.0116 1.0152 1.0189 1.0225
Sim 1000 1 1.0041 1.0078 1.0114 1.0150 1.0182 1.0213
P(t, T) 1 0.9960 0.9924 0.9889 0.9854 0.9820 0.9788

v
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Example ((...continued) Estimating the zcb price)

@ In the last column of the Table we have the simulated values of the integral.

@ We can then compute, for each path, the simulated values of the money
market account and of the zcb price

Simulation fo s)ds B(0,0.5) ﬁ
1 0.0208 1.0210  0.979%4

2 0.0223 1.0225 0.9780
1000 0.0211 1.0213 0.9791

Table: Simulated MMA and discounted payoff

@ For example the bold cell has been computed as e(0:0223) — 1 0225 whilst
the red cell according to 15555 0225 = 0.9780.

@ The MC estimate of the 6m zcb price is the average of the discounted payoffs:

0.9794 4+ 0.9780 + - - - +0.9791

= 0.9788.
1000
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Example ((...continued) Monte Carlo Simulation)

3 | | | |
0 g3.102017 025 033 042 05

Years

Figure: Simulated Interest Paths

4
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Figure: Simulated Interest Paths. The area below the simulated path represents the simulated value of the
money market account.
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Example ((...continued) Monte Carlo Simulation)

O | | | | |
0 83.10-20.17 025 033 042 05
Time T (Years)

Figure: Simulated paths of /(t, T) = frT r(s)ds,0=t < T <0.5.

v
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Using a short rate model

@ Once we have calibrate the model, we can use it to price some structured
product.

@ Let us consider the case of a CMS bond, i.e. a bond that pays at times
t=Ty,---, Th a semi-annual coupon equal to

max (min (SR; M)), m) x 0.5 x FV

where FV is the bond face value and SR is the 5-year swap rate, given by

1—-P(t, t+5)
SR(t) = 10 7

and M (m) is the maximum (minimum) coupon rate.
@ We proceed as follow

o We simulate the short rate path and the money market account;
o At the coupon date, we use the model discount factor to obtain the discount
factors needed to find the swap rate.
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Pricing a bond via MC simulation |

Q Assign r(0), and set A the swap payment dates tenor (assumed for simplicity
to be equally spaced and equal to 0.5).

© Draw a standard Gaussian random variable €;, j = 1, -+, n and recursively
simulate r(Tj) on the swap payment dates according to

a 02
r(k)<TJ) =u+e A<r(k)(7—j'—1>_]4) + ﬂ(]__e,ZXA)eJ(.k)'

where the index k refers to the simulation, k =1,---, M.

© Given the simulated short rate path, we simulate the money market account

(MMA) MMA(T) = MMA(t)effT r(s)ds 3pproximating the integral using the
trapezoidal rule
MMA®) (T;) 22 MMA®) (T;_y)e3 (" T+ (Tj0))

starting with MMA(0) = 1.
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Pricing a bond via MC simulation |l

© At each future payment date s, i.e. s= Tq,---, T, we simulate the
discount curve according to

and recalculate the swap rate according to it

11— PWI(s, Ty)
S 05x Y, PKI(s, T;)

5K (s)
and we obtain the semi-annual coupon
cpnt¥)(s) = max (min (S(k)(s), M) ,m) x 0.5 x FV.
© The present value of the simulated coupon is

eon) (s
ov(cpn)¥) (s) = M
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Pricing a bond via MC simulation |1l

@ We obtain the simulated price of the bond as

FV

n
price ; cpn + Wk(m

@ The bond price is obtained by averaging the simulated discounted bond
payoff with respect to the number of simulations J

J
price(0 - Z riceX

k

@ A concrete example is presented in the Excel file
Fl_ImplementingVasicek.xlsm, sheet:

Q}‘OH rate %100@( — W@ZHDWX Jpre rote ol
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Problems with short rate models

@ Short rate models recover a one-to-one relationship between instantaneous
rate and zcb price.

However, the main limit is that this relationship is obtained at a cost: zcb
model prices do not coincide exactly with zcb market prices.

@ Indeed, the calibration step does not allow to recover exactly market prices
and some significant mispricing error is still present.

Most traders find this unsatisfactory: how can we believe in a model for
pricing derivatives, when the model itself is unable to recover the price of the
underlying. Indeed a small error in the price of the underlying can lead to a
large mispricing in the derivative.

@ Notice that this problem does not occur in the Black-Scholes model for
pricing options on stocks: the price of the stock is assumed to be given and
observed on the market.

This limit has made short rate models to be replaced by the so called
consistent models, i.e. models that take as given zcb prices and focus the
attention on the dynamics of the instantaneous forward rates.

@ This is the class of Heath-Jarrow-Morton models.
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Conclusions

@ We have presented Short-rate models.

Their great advantage is the analytical tractability that makes their
implementation very easy.

Their main limit is the lack of consistency to market quotations.

One factor specifications also generate perfect correlation among movements
at different points of the yield curve.

This limits their use for pricing interest rate derivatives

They are mainly used for relative value trading, i.e. for exploiting mispricing
on the yield curve.

A detailed example is given in Veronesi book, chapter 16.

The consistency problem is solved moving to their exogenous extension.
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The Merton Model

Assumptions

@ The Merton model is based on two assumptions:

@ the expected change and the volatility of the short rate are constant;
@ the instantaneous variations in the short rate have normal distribution.
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The Merton Model

Mathematical Formulation

@ The two assumptions (constant expected change and constant volatility) can
be formulated setting the (risk-neutral) expected change in the short rate to
be equal to

]Et (dr) = ‘udt,
where p is a constant and is called drift, and
V¢ (dr) = o?dt,
where o is a positive constant and is called absolute volatility or diffusion
coefficient;
@ The two assumptions can be combined with the normality assumption to get
the following risk-neutral dynamics to the short rate
dr(t) = pdt + cdW(t), 2
where dW(t) is the increment of the Wiener process, i.e.
dW (t) ~ N (0, dt) .
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The Merton Model |

Solving the model

@ Therefore

dr(t) ~ N (ydt,(72dt) .

@ This is equivalent to say that

r(s) = r(t)—i—/tsyds—i-/tsadW(u),
or equivalently
F(s) = r(t) + i x (s — ) +a/ts dW (u).
@ In order to price a zcb we now need the distribution of ftT r(s)ds and then

to compute [E; (e’ ) r(s)ds).
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The Merton Model |l

Solving the model

@ We observe that

./;Tr(s)ds: r(t) x (T —t) +y/tT(s— t)ds—l—a/tT./:dW(u)ds_

or equivalently

/Tr(s)ds — () x (T — t)+y(T_2t)2+a/tT/tde(u)ds.

t

@ With a change of integration, we can write

/tT/: dW (u)ds = /tT </5Tds> dW (u).

@ In addition, we can observe that (exploiting the property of the expected
value and the variance for a sum of independent terms)

(o) weo) ~N(o,/f (/STds>2du>_
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The Merton Model Il

Solving the model

@ Therefore

/tTr(s)ds~N<r(t) x (T—t)+y(T2t)2,a2/tT (/sTds>2du>.

@ We also recall the following property of the moment generating function of a
Gaussian r.v.

Fact (Moment Generating Function of a normal random variable)

If X is a Gaussian random variable with mean m and variance v?
~ V2
E. (e_/\x> =e Mtz

This is the so called moment generating function (mgf) of a normal random
variable.

(©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269  58/110



The pricing formula in the Merton model

Fact (Pricing formula)

Using the property of the mgf of the normal random variable and setting
2
X=[]r(s m—r(t)x( — )+

v2 =02 ft (f ds) du = 02@ and A = 1 we have the following pricing

formula for a zcb in the Merton model:
P(t,T) = Er (e I r(99) = mrlOT—0-nlHE ot I
In addition, the spot rate is linear in r

InP(t, T) _

R(t, T)=— 3
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The shape of the term structure

Fact (The shape of the term structure)

@ The shape of the term structure as function of the time to maturity depends
on the quantity

_ _ +)2
I’(t)~|—]/l(T2 t) _0.2(T6t) )

@ This a parabola, with the vertex occurring in
3

T—t=_k,
20

@ Therefore, for T — t > 0 the term structure is
o decreasing if 4 <0
o will be increasing and then decreasing if y > 0
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The volatility term structure in the Merton model

Fact (Volatility term structure)

@ It is defined as the standard deviation of absolute changes in the spot rates in
the time unit (dt = 1).

SDev (dR(t, T)) = SDev (dr(t)) = 0.

@ This term structure is therefore flat: spot rates with different maturities have
the same volatility.

4
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The correlation structure in the Merton model

Fact (Volatility term structure)

@ It is defined as the correlation of absolute changes in spot rates with different
maturity.

Corr (dR(t, T1), dR(t, Tp)) = Corr (dr(t),dr(t)) = 1.

@ This correlation is 1.

o This is a problem for all one-factor (short rate) models.
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Is the Merton model a good model?

@ The model is analytically tractable: closed form expression for pricing zcb
(and even more complex derivatives).

@ The model is simple to simulate (so suitable for Monte Carlo pricing of very
sophisticated financial instruments).

@ Coding the pricing formula in VBA, Matlab or C does not represent a
problem.

@ The assumption of constant drift and volatility implies unrealistic changes in
the term structure.

@ The normality assumption implies that interest rates can become negative.

@ Having just three parameters (r, y and o), the model is not able to fit exactly
the term structure of zcb prices. Only three zcb's can be priced exactly.

@ Being a one-factor model, changes in spot rates with different maturities are
perfectly correlated, against the empirical evidence.
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The Vasicek Model

Assumptions

o Reference Vasicek, O. (1977). An equilibrium characterization of the term
structure. Journal of Financial Economics 5 177-188. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.
447&rep=repl&type=pdf

@ The Vasicek model is based on two assumptions:

@ the short rate shows mean reversion;

@ the instantaneous variations in the short rate have normal distribution with
constant volatility.

@ Mean-reversion means to assume that the economy tends toward some
equilibrium based on such fundamental factors as the productivity of capital,
long-term monetary policy, and so on, short-term rates will be characterized
by mean reversion.

o When the short-term rate is above its long-run equilibrium value, the drift is
negative, driving the rate down toward this long-run value.

o When the rate is below its equilibrium value, the drift is positive, driving the
rate up toward this value.
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The Vasicek Model |

Mathematical Formulation

@ The idea of mean-reversion can be formulated setting the (risk-neutral)
expected change in the short rate to be equal to

B (dr) = a (u—r (t)) dt,

where:

a u denotes the long-run value of short rate in the risk-neutral
world;
b « denotes the speed of mean reversion, (a« > 0).

o if r(t) > y, then )
IEt (dr) < 0,

i.e. we expect a decrease in the short rate
o if r(t) < u, then
]Et (dr) > 0,

i.e. we expect an increase in the short rate.
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The Vasicek Model |l

Mathematical Formulation

@ The normality assumption of the short rate changes coupled with the idea of
mean-reversion can be formulated assigning the following risk-neutral
dynamics to the short rate

dr(t) =ax (u—r(t))dt+oxdW(t), (3)
where:
@ 0 is the diffusion coefficient, (o > 0);

o dW(t) is the increment of the Wiener process, i.e. dW (t) ~ N (0, dt).

@ Solving the sde, we get
rls) = e (1) =) + ko [ e AW (),
t
and

1 — e—2a(s—t) 2
H($)lr(t) ~ N <e-“<s-f> (r(e) — ) +w02€2,,¢> =N (”; ‘;) '
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Figure: Density of the Vasicek process at different time horizons: « = 0.8, = 0.09, ¢ = 0.05
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Solving the Vasicek model |

© Compute the distribution of ft s)ds, and observe that

/ / (=) g ( )ds:/tT </5Te“(5“)ds) dW (u),

and therefore

[ ([ ey oo (o [T ([ e o) ).

@ This fact allows us, exploiting the m.g.f. of a normal random variable, to
~ T
compute P(t, T) = E; (e* Je I’(S)ds).
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Solving the Vasicek model Il

© In particular, we get

P (t, T) = eA(th)—B(t,T)X,(t),

where

1— eﬂx(T*t)

o

AL T) = <B<r,T><Tr)>(y

B(t, T) =

_ LZ _ ?B (t, T)2
202 4o '

Von- fivesr Leotd Square Eotimation
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Term structure shapes in the Vasicek model |

@ Given the exponential form of the zcb price, the spot rate is linear in r(t)

A(t, T) B(t,T)
T—t T—t xr(t),

R(t, T)=—

@ The long-term spot rate is obtained by letting T to tend to +o0

o2

R = :
(too)=p—>o
@ In particular, it follows that the term structure is

@ monotonically increasing if r(t) < R (t, 00) — 7 2
Q humped if R (t,00) — &5 < r(t) < R (t,00) + 25;

. . . 2
© monotonically decreasing if r(t) > R (t, ) + 5.7;
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Figure: Term Structure of spot rates in the Vasicek model
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The volatility term structure in the Vasicek model

@ The volatility term structure is the plot of the volatility of spot rates againt
time to maturity.

@ Typically, the observed volatility term structure is monotonically decreasing.

@ In particular, in the Vasicek model we have that, by using the Ito’s lemma,
the standard deviation of spot rates is

SDev (R(t, T)) = (TBTLLC),

@ This is a declining function of time, provided that & > 0.

The mean reversion property (x > 0) allows us to generate a decreasing term
structure of volatilities.
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The Non-Affine Exponential Vasicek model |

@ A natural way of obtaining a lognormal short rate model is by assuming that
y = In(r) follows an OU process.

dyt = (9 — ayt) dt +(7th

@ Then the short rate has the following dynamics:

2
drt = It (9+U2.alnrt> dt+0’l’tth

@ Interpretation of the model parameters:

e a: mean-reversion speed (it measures the speed at which log r; tends to its
long-term value;

e 0: standard deviation rate of dr:/r;

e 0/a: long-term level of the log-rate

@ The process r (t), being an exponential of a Gaussian r.v., is lognormally
distributed.
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The Non-Affine Exponential Vasicek model 1l

The short rate is always mean-reverting.

The model is not affine.

No explicit formulas for zero coupon bonds and options on zcb are available.

@ The lognormal assumption on r implies the explosion of the bank account:

Eo (B (At)) = Eg (e ()Atl’(u)du> o

In practice, this model is always applied using trees, with a finite number of
states, and, therefore, finite expectations.
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The Cox-Ingersoll-Ross model

Assumption

o Reference: COX, J., INGERSOLL, J. and ROSS, S. (1985). A theory of the
term structure of interest rates. Econometrica 53 385-408. Available at
http://www.fin.ntu.edu.tw/~tzeng/course/CIR(1985)-Eca.pdf

@ The Vasicek model assumes that the volatility of the short rate is
independent of the level of the short rate, i.e. Var (dr) = o?dt.
@ This is almost certainly not true at extreme levels of the short rate.

o Periods of high inflation and high short-term interest rates are inherently
unstable and, as a result, the basis point volatility of the short rate tends to be
high.

o Also, when the short-term rate is very low, its basis point volatility is limited
by the fact that interest rates cannot decline much below zero.

@ Economic arguments of this sort have led to specifying the volatility of the
short rate as an increasing function of the short rate.

(@©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269 76 /110


http://www.fin.ntu.edu.tw/~tzeng/course/CIR(1985)-Eca.pdf

The Cox-Ingersoll-Ross model

Mathematical Formulation
@ The risk-neutral dynamics of the Cox-Ingersoll-Ross (CIR) model are
dr=ax(p—r(t)) xdt+ox/r(t)xdW(t),
so that

Var (dr) = 02 x r(t) x dt.

@ As in the Vasicek model, the short rate features mean-reversion.
@ In addition, respect to the Vasicek model, the short rate is not allowed to
assume negative values.
@ The model belongs to the affine class, so that the zcb prices are exponential
functions of r
P(t, T) — efB(t,T)r(t)#»A(t,T)v
where B is given by
2(64’1(7—70 — ]_)
g2 (770 —1) 421"
where ¢1 = Va2 +202; ¢ = ¢1 +a and A(t, T) is given in Brigo-Mercurio,
2006, pag. 64-66.
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Term structure shapes in the CIR model |

@ Given the exponential form of the zcb price, the spot rate is linear in r(t)

A(t, T) B(t,T) o
T—1t T—t

R(t, T)=— r(t),

and the expressions for A and
@ The long-term spot rate is obtained by letting T to tend to 40
20

R (t,o0) = ,
( ) Y+

where v = /(a2 + 202).
@ In particular, it follows that the term structure is

@ monotonically increasing if r(t) < R (t,c0);
@ humped if R (t,00) < r(t) < y;
© monotonically decreasing if r(t) > u;
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The distribution of the short rate in the CIR model |

@ In order to get an intuition on the distribution of the short rate, let us
consider the SDE X o
dX(t) = _EX(t)dt + EdW(t)'
@ We recognize that X(t) is a Gaussian process with mean m(t) and variance
s2(t):
— e0t)
8u

@ Now let us define R(t) = X?(t) and using the Ito’s lemma we have

m(t) = e ¥ X(0) s2(t) = o2

dr(t) = a(p —r(t))dt +oy/r(t)dW(t),

with u = 02/ (4a).
@ Therefore r(t) follows a square root process.
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The distribution of the short rate in the CIR model
1]

@ To understand what is the distribution of R, we proceed as follows.
@ With a little abuse of notation, let us write

X =sZ+ m,

where Z is a standard Gaussian random variable.
@ It follows that r is the square of a non-standard Gaussian distribution, i.e.

r:X2:sz(Z+g)2

© This implies that
r
s
has a non central chi-square distribution with 1 degree of freedom and

parameter of non-centrality m/s (see Wikipedia).

@ This shows that the distribution of r, i.e. the solution of the square-root
SDE, is related to a non-central chi-square distribution with 1 degree of
freedom and parameter of non centrality m/s.
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The distribution of the short rate in the CIR model
1]

@ However, if we generalize to

where the X; are d iid processes like in the case considered above, with
coefficients a; and o;, r will still have a non-central chi-square distribution
but now with d degrees of freedom

@ The result can be further generalized to the more general case of a non
integer number d.
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The distribution of the short rate in the CIR model
v

Distribution of r in the CIR model Let us assume that r(t) follows the
square-root SDE

dr(t) = a(p —r(t))dt+oy/r(t)dW(t).

Let us set
0.2 (1 o e—tx(T—t))
k= .
4o
Then, the distribution of
r(T)
k

conditioned on r(t) is a non-central chi-square distribution with d degrees of
freedom and non centrality parameter A, where

g dap | 4nr(t)
T T R0 —1y
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The distribution of the short rate in the CIR model
V

In particular, the density of r(T), conditioned on r(t), is given by

d/2—-1
1 (r(T)e T8 ° et 704 r(t)r(T)ex(T—1)
EYR A 2k
2k r(t) € d/2-1 T ,

where I, (x) is the modified Bessel function of the first type of order v. In
addition, applying the properties of the non-central chi-square distribution, the
expectation of r(T) given r(t) is

pe(T) = k(d+A) = Be (r(T)) = e *T9r(8) 4 (1 - (70

and its variance is

Var, (r(T)) = 2k (d +2A) = r (¢) (":) (e-W—f) - e_2"‘(T_t)) oy (‘72) (1

o 2u
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Figure: Density of the short rate in the CIR model at different horizons T. « = 0.1, ¢ = 0.01, r(t) = 0.03,
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The BDFS model |

@ Reference: BALDUZZI, P., DAS, S. R., FORESI, S. and SUNDARAM, R.
(1996). A simple approach to three-factor affine term structure models. J.
Fixed Income 6 43-53.

@ The short rate dynamics in the BDFS model have the following properties

@ The BDFS model is a multifactor model.

@ The BDFS model allows for mean-reversion as the Vasicek and the CIR
models.

© However, here the long run mean is not constant, but time varying according
to a second sde.
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The BDFS model II

@ In addition, the instantaneous volatility is not constant but changing according

to a square-root process.

= k(pu(t)—r(t))dt+/v(t)dW (),

= a(B—u(t))dt+ndWa(t),

= a(b—v(t)dt+¢y/v(t)dWs (1),

0,j=13,

= p1’3dt‘

@ A particular case of the BDFS model is the Fong-Vasicek model where p is

assumed to be constant.
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The BDFS model Il

@ Both models belong to the affine class, and the zcb price formula is given by

P(t, T) = ALT)=BET)r—C(T)u-D(t.T)v,

where
— e k(T-1)
B(t,T) = 1%
1— e—k(T—t) 4 gefa(rft) (1 _ efac(Tft))
C(t,T) =

o —k

and A(t, T) and D (t, T) satisfy two coupled ordinary differential equations.
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The BDFS model IV

@ A limit of this model is related to the fact that we can hedge the volatility
exposure by taking position in discount bonds (we say that volatility is
spanned by the discount curve).

@ In reality, there is empirical evidence that this risk cannot be hedged perfectly
by trading only in discount bonds.

@ Therefore, the necessity for multifactor models with unspanned stochastic
volatility, such that the volatilities of discount bonds depend on state
variables that are not included in the state variables used for the
reconstruction of the discount curve.

@ This is discussed for example in Collin-Dufresne and Goldstein (2002).
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Outline |

@ Exogenous short rate models
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Problems with short rate models

@ Short rate models recover a one-to-one relationship between instantaneous
rate and zcb price.

However, the main limit is that this relationship is obtained at a cost: zcb
model prices do not coincide exactly with zcb market prices.

@ Indeed, the calibration step does not allow to recover exactly market prices
and some significant mispricing error is still present.

Most traders find this unsatisfactory: how can we believe in a model for
pricing derivatives, when the model itself is unable to recover the price of the
underlying. Indeed a small error in the price of the underlying can lead to a
large mispricing in the derivative.

@ Notice that this problem does not occur in the Black-Scholes model for
pricing options on stocks: the price of the stock is assumed to be given and
observed on the market.

This limit has made short rate models to be replaced by the so called
consistent models, i.e. models that take as given zcb prices and focus the
attention on the dynamics of the instantaneous forward rates.

@ This is the class of Heath-Jarrow-Morton models.
Interest Rate Modelling SMM269  4/26



Exogenous short rate models
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Exogenous short rate models |

The basic strategy that is used to transform an endogenous model into an
exogenous short rate model is to include some time-varying parameters that allow
to fit the initial term structure.

r(s) = F(t,s)+x(s),s>t
with x(0) = and r(t) = F(t,t).
@ Extended Merton or Ho and Lee (discrete time version) or Jamshidian model
r(s) = F(t,s) +o(Ws — W)
ie. dx = odW(t);

o Extended Vasicek (Hull-White one factor)

r(s) = F(t,s) + e 0x(t) + (T/S e (=t gy,
t

ie. dx = —axdt + odW(t);
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Exogenous short rate models Il
e Extended CIR (or CIR++)

r(s) = F(t,s)+ x(s),

where x(s) is a CIR process, i.e. dx = a(py — x)dt + o+/x(t)dW(t);
@ Black-Karasinski model (BDT in discrete time)

r(s) = F(t,s)exp(x(s)),

where x(s) is a mean-reverting Gaussian process, i.e.
dx = a(p — x)dt + odW (t).
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Exogenous short rate models Il

@ The exogenous (deterministic) time-dependent shift is added to the model to

guarantee consistency with an exogenously given term structure of discount
factors Pkt (t, T).

@ Indeed, if Pkt (t, T) are the quoted zero-coupon prices, the
model-to-market consistency is guaranteed if

— ftT F(t,s)ds _ pmkt (t' T)
T '
]Et <67 I x(s)ds)

or, VT > 0, by taking the log:

- /tT F(t,s)ds = In (Pmkf (t, T)) —n (IEt (e— ffx<s)ds))
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Exogenous short rate models IV

@ Then taking the derivative with respect to T (exploit the so called Leibnitz
rule for the derivation of integrals), we have

8<In P"’kt(t,T)fln]Et<e’ftTX(s)ds>>
F(t, T)= - T
dInE; (e’ftTX(s)ds>
Fmkt(t, T) + T

where f™kt(t, T) is the instantaneous forward rate curve.

@ To improve the fitting of the volatility term structure the diffusion parameter
of short rate models can be taken time-varying as well, but this has some
drawbacks such as instability of calibrated parameters through time and
unrealistic future volatility structures.

@ Therefore this approach is not used in practice.
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Exogenous short rate models V

Example (The Extended Merton Model (Ho and Lee))

o If dx(t) = cdW(s) and x(0) = 0, then
E, (e— ffx(s)ds) _ B (T-1?
@ Therefore

dInE; (e_ftTX(s)ds> 3 2 e
oT =5 (7=

@ So we have )

F(e,T) = £t T) + (T - )2,
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Exogenous short rate models VI

Table: Making short rate model consistent with the term structure

Merton Ho-Lee
Ft,s) r(t)(s—t) +pu(s—1) FkE(t,s) + G (s — t)?

Vasicek Hull-White 1F

2

F(ts) r(t)e (578 4 pu(1— (7)) Fmkt (¢, T) 4 % (e*a(sft) - 1)

CIR CIR++

alnIE<e’ ftTX(s)ds)

F(t,s) r(t)isa CIR process frke(e, T) + ———7—~

MR-Lognormal Black-Karasinsky
F(t,s) r(t)isa MR-Logn. process Iterative procedure

(@©Gianluca Fusai (2019-20) Interest Rate Modelling SMM269 11/26



Summary of exogeneous short rate models II

Model | r>0 re ZCB | Caplets | MR | IV | p | MC | Trees
HL No Gaussian Y Y No | ~ |1 Y Y
HW1 No Gaussian Y Y Y ~ |1 Y Y
CIR++ | Y* | Shifted NCx? | Y Y Y [~]1]Y ~
BK Y LN No No Y | ~|1] ~ ~
Market fit

Model Zcb | Caps | Swaptions

HL Y ~ ~

HW1 Y ~ ~

CIR++ | Y ~ ~

BK Y ~ ~
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Example (1. A Case Study: the Ho and Lee model)

@ The short rate is given by
S
r(s) = F(t, s) —l—a/ dW (u)
t

with F(t,t) = r(t).

@ Integrate
T T
/ r(s)ds:/ F(tsds—!—tf/ / dW (u
t t
@ It can be shown that
.
/ r(s)ds ~ N (M(t, T), V(t, T)),
t
where M(t, T) = [.] F(t,s)ds and V(t, T) = G (T — t)3.

@ Using the moment generating function of a Gaussian r.v., it follows that the
price of a zcb is given by

o2 3
'DHL(t: T - E, (e ft ds) — ft (t,s)ds+% (T—t) (1)
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Example (2. A Case Study: Fitting the market discount curve)

@ We can now choose the function F(t,s) to fit the market discount curve
— [T F(ts)ds+ 92 (T—t)?
e t ! 6 — mkt(t, T)

° Taking the log and changing sign, we have:
ft (t,s)ds = —In(Ppe(t, T)) + %(T — t)3 and then compute the
derlvatlve with respect to T

oIn (Ppe(t, T)) = 02 02

F(t,T)=— e +7(T—t)2:f(t, T)+7(T—t)2.
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Example (3. A Case Study: Simulating the short rate)

1. We start at t, by setting r(t) = f(t,t) and we consider the short rate at two
dates (T > s > t, say). We have

(T) = £(6,T) + (T = 2 + a(W(T) — W(E)),

and
2
r(s) = F(t.5) + T (s = )2+ a(W(s) - W(2)).
2. We take the difference r(T) — r(s) and we can write
o’ 2 2
r(T)=r(s)+f(t, T)— f(t,s)—|—7 ((T —t)°—(s—1t) ) +o(W(T)—W(s)).
3. Setting T = s+ ds, we can now simulate the short rate r(s + ds) step by step
by using
o2
r(s)+ f(t,s+ds) —f(t,s) + = ((s—i— ds —t)2 — (s — t)2> +0Z(s)Vds,

where Z(s)vds = W(s+ds) — W(s) ~ N (0,ds) and Z(s) ~ N (0,1).
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A Numerical Example |

Excel: Fl_ShortRateModels; Sheet: SimulationHoLee)

Table: A simulated path of the short rate. Parameters: o = 0.01, ds = 0.25. For example, setting
s+ds=1,5s=0.75 r(1) = 0.936% + (0.815% — 0.737%) + %(12 —0.752) 4+ 0.01 - (—0.2893) = 0.727%.

s—t N(0,1) dW(s)=N(0,1)vds £(0,s) r(s)

0.00 0.500%  0.500%
0.25 0.0148 0.0074 0.579%  0.587%
0.50 0.1491 0.0746 0.658%  0.742%
0.75  0.2284 0.1142 0.737% 0.936%
1.00 -0.5785 -0.2893 0.815%

1.25 -0.5225 -0.2613 0.893%  0.546%
150 0.2257 0.1128 0.970%  0.740%
1.75 0.5754 0.2877 1.047% 1.109%
2.00 0.7858 0.3929 1.124% 1.583%
225 1.9948 0.9974 1.200% 2.662%
250 1.6315 0.8157 1.276% 3.559%
2.75 -0.1005 -0.0502 1.351% 3.591%
3.00 -0.2496 -0.1248 1.426% 3.548%
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A Numerical Example |l
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Figure: A simulated path (green line) of the short rate and the instantaneous forward curve (yellow line).
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Example (4. A Case Study: Simulating the term structure)

@ Given the simulated short rate at time s, we can simulate the term structure
of discount factors via

_ Pkt (8. T) (T5)(r(s)—F(£,5))— 302 (s—1)-(T—s)
P(s’ T) B Pmkt(tvs) © i

@ We can simulate the spot curve

2
T >s>t.

2

=g () - o
— —(s— s 2

= (T t)R(t’Tr),; DR, )+r(s)—f(t,s)+%(5—t)(7-_5)

@ Notice that: a.) in the last term, the coefficient s — t is always positive, and
for large s, the term structure will be positively sloped; b.) if o = 0, then
r(s) = f(t,s), Vs and the future spot rate is equal to the forward spot rate.

vy
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Table: Simulated Term Structure of Spot Rates

Time |

0
0.25
0.5
0.75
1
1.25
15
1.75
2
2.25
25
2.75

3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.5
0.500% 0.619% 0.736% 0.853% 0.968% 1.082% 1.195% 1.306% 1.417% 1.526% 1.634%
0.587% 0.862% 0.978% 1.093% 1.207% 1.319% 1.430% 1.541% 1.650% 1.758% 1.865%
0.742% 1.169% 1.284% 1.397% 1.509% 1.621% 1.731% 1.839% 1.947% 2.054% 2.159%
0.936% 1.513% 1.626% 1.738% 1.849% 1.959% 2.067% 2.175% 2.281% 2.386% 2.491%
0.727% 1.451% 1.563% 1.673% 1.783% 1.891% 1.998% 2.104% 2.209% 2.313% 2.416%
0.546% 1.414% 1.524% 1.633% 1.741% 1.848% 1.954% 2.059% 2.162% 2.265% 2.366%
0.740% 1.748% 1.857% 1.964% 2.071% 2.177% 2.281% 2.385% 2.487% 2.588% 2.688%
1.109% 2.254% 2.361% 2.468% 2.573% 2.677% 2.781% 2.883% 2.984% 3.084% 3.183%
1.583% 2.863% 2.969% 3.074% 3.178% 3.281% 3.383% 3.483% 3.583% 3.682% 3.780%
2.662% 4.073% 4.178% 4.282% 4.384% 4.486% 4.587% 4.686% 4.785% 4.882% 4.978%
3.559% 5.099% 5.203% 5.305% 5.407% 5.507% 5.606% 5.704% 5.802% 5.898% 5.993%
3.591% 5.257% 5.359% 5.460% 5.560% 5.659% 5.757% 5.854% 5.950% 6.045% 6.139%
3.548% 5.337% 5.438% 5.538% 5.637% 5.735% 5.831% 5.927% 6.022% 6.116% 6.209%
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Figure: Simulated Term Structure of Spot Rates at different Time Step (dt = 3m).
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Example (1. Case Study: Pricing a Structured Bond in the Ho and Lee

model )

@ We need to price a 3-years bond, with semi-annual coupons (reset in
advance) equal to

Cpn(T;) = (1% + max(L(Tj-1, T;) —1%,0)) - a7, ; 7,

and the notional at maturity, with 7;, =05 x i/, i=1,---,6

@ We simulate the short rate as described before and at each reset date, we
compute the simulated 6-months discount factor P(k)(T,-_l, T;) using

Pkt (8 Ti) (= T1) (PO (Ty) = (£, Ti 1)~ 302 Ty —t)-(Ti= Ty-1)?

Pmkt(ti Tifl)
and then the corresponding 6-months LIBOR rate
1 1
LT, T = ( —1>,k:1,---,l\/l,
=i 1) ETha,Th P(k)(T,-,l,T,-)

and the money market account

MMA(T;) = MMA(T; — At)e? (r(Ti=At)+r(Ti))-At,




Example (Case Study: (continued))

@ At each coupon date we compute the present value of the simulated coupon

(1% + max(L&) (T;_1, T;) — 1%,0)) OT T,

k) (T.)) =
@ We also compute the PV of the face value
PV(FV) = —
-~ MMA(Tg)

@ The simulated bond price is

6
BPK =Y PV (Cpn®(T;)) + PV(FV)
i=1

@ The estimated bond price is

1 v opk)
BP=—Y BPK.
v




Example (Case St

Table: A simulated path of the short rate and the corresponding coupons. E.g.
0.784% = (1% + max(1.569% — 1%, 0)) x 0.5 and 0.776% = 0.784%/1.010449

s f(0,s) r(s) P(s,s+0,5) L(s,s+0,5) MMA Coupon FV PV(CF)

0 0.500% 0.500% 99.63% 0.738% 1
0.25 0.579% 0.587% 99.51% 0.980% 1.001360
0.5 0.658% 0.742% 99.36% 1.288% 1.003024 0.500% 0.498%
0.75 0.737% 0.936% 99.19% 1.633% 1.005130

1 0.815% 0.727% 99.22% 1.569% 1.007221 0.644% 0.639%
fIR25) 0.893% 0.546% 99.24% 1.530% 1.008825

15 0.970% 0.740% 99.08% 1.865% 1.010449 0.784% 0.776%
1.75 1.047% 1.109% 98.83% 2.375% 1.012786

2 1.124% 1.583% 98.53% 2.991% 1.016199 0.933% 0.918%
2.25 1.200% 2.662% 97.93% 4.222% 1.021605

25 1.276% 3.559% 97.43% 5.271% 1.029580 1.495% 1.452%
275 1.351% 3.591% 97.36% 5.431% 1.038823

3 1.426% 3.548% 97.32% 5.512% 1.048135 2.635% 1 97.922%




Example (Case Study: (continued))
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Figure: Simulated LIBOR rate and corresponding coupon rate (the rule reset in advance applies).




Example (Case Study: (continued))
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Figure: Distribution of simulated bond prices

Table: Estimated Bond Price (1000 Simulations)

Min Avg Max s.e.
PV(Cpn) 3.004% 5.952% 12.672% | 0.068%
PV(FV) 88.454% 97.141%  106.909% | 0.095%

PV(Bond) | 101.001%  103.093%  110.003% | 0.034%




Conclusions

@ We have presented an extension of short-rate models.
@ The extension allows us to obtain consistency to market quotations.

@ This property allows their use for pricing interest rate derivatives
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Outline |

o Replicating a floating coupon
9 Again the most important formula
© Applications of the Fundamental Formula

O Take Aways
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Forward Rate Agreements
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FRA rates and discount factors
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Floating Rate Notes

Q Application 4:
Interest Rate Swaps
@ A Case Study
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The Most Important Formula:
Replicating and Pricing a Floating
Amount
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Question

Let us consider the amount that resets in T; and is paid in T (reset in
advance and pay in arrears)

Payoff(Tz) = L(Tl, Tz) X D‘Tl,Tg

What is t-price of the above (random) payoff?

? L(Ty, T2) X aqy, 15
e et e EN
t T T2

(Value Date) (Reset Date) (Payment Date)
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Replicating a floating payment |

Consider the following trading strategies in two portfolios, A and B:
@ Portfolio A: floating coupon

|t | T T
Cash flow | —Va=?| — | [(T1, T2) x a1y, 75

@ Porfolio B: replicating portfolio

o buy a T1 — zcb, and when it expires reinvest the unit face value 1, at the
prevailing Libor rate, from T; to T,
o sella Tp — zcb

t T1 T>
1) —P(t, Tl) 1 —
— —1 1+Z(T1,T2)X0(T1’T2
2) P (t, T?) — -1
—[P(t, Tl)—P(t, Tz)] - L(Tl,Tz) X 0T T,
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Replicating a floating payment I
@ By no arbitrage, Va (t) = Vg (t):
Va(t)=P(t, T1)—P(t T2) (1)

o the current value of a floating payment is equal to the difference of two
zero-coupon bonds.

o Collecting P (t, T2), we get:

Va(t) = P(t,T1)—P(t,To)
- P(t,@x(%—l)xm

= P(t, Tz) X F (t, Tl, T2) X AT, Ty-

@ The current value of a floating payment can be determined as follows:

@ replace the unknown future Libor rate Z(Tl, T>) with the current simple
forward rate F (t, T1, T2);
@ and, discount it using the riskless discount factor.
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The idea behind formula (1)

(©Gianluca Fusai (Cass )

Most Important Formula

1 X 1+L(T1,T2) X 0T, T,
¢ ----=-= F--—--=-=--=--
I :
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Fact (Fundamental Receipe for Pricing Floating Payments)

Consider the the floating amount
Ve (T2) = Nx L(T1, T2) X ary 1,

that resets in T and is paid in T5.
Its t-fair value can be computed in two ways:

@ as difference of two zero-coupon bonds:

[ VeL (t) = (P (t, T1) — P (t, T2)) x N. ]

© via forward rate representation:

-

Ve (t) = N X F(t, T1, T2) X lJ:rLT2 X P(t, Tg).

notional forward rate accrual factor  Ta-discount factor




Example (Using the formula)

@ We have the following market quotes

T, P(0,T;)
0.5 0.98
1 0.94

@ What's the value today of a 6x12 floating payment at Libor, on a notional of
Euro 1,000, 000?

| 0 | 7 =05 | T, =1
Cashflow | 222 | — [ NxL[(0.51)x0.5
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@ Method 1: via difference of two zero-coupon bond prices

4 Vet (0) = Nx[P(0,T1)— P (0, T»)]

Witk for o

— 1,000,000 x [0.98 — 0.94]
40, 000

@ Method 2: via forward rate

VR (0) =

N x F (0, Ty, T2) X a(g;,1,) X P (0, T2)
1,000,000 x F (0,0.5,1) x 0.5 x P (0,1)

1 /0.98
1,000, 000 x 05 (094 — 1) x 0.5 x 0.94
1,000, 000 x 8.5106% x 0.5 x 0.94

40,000

(©Gianluca Fusai (Cass )
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Applications of the formula

Pricing Forward Rate Agreement
Pricing Floating Rate Notes
Pricing Swaps

Pricing Floating Rate Mortgages

00000

In general, pricing any kind od product having cash flows tied to a LIBOR
rate.
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Assumptions behind the formula

© No counterparty risk. In particular, we need to assume that credit risk is the
same for all banks and stable over time.

© The tenor of the reference rate is the same as the tenor of the deposit.

© The convention resets in advance, pay in arrears is adopted.

SMM269 13 /121

(@©Gianluca Fusai (Cass ) Most Important Formula


Heqing

Heqing


Assumption 1: No Counterparty Credit Risk |

@ If the counterparty can default, we need to adjust for the expected losses due
to her default.

@ The value of the defaultable contract is then
Risk-Free Value - Present value of the expected loss.

@ Assume, for aim of simplicity, that
a. the default can only occurr at expiry;

b. on default, we can recover a fraction R of the (risk-free) market value of the
contract.

c. So the actual loss given default is

(1 — R) X L(Tl, Tg) X D‘Tl,T2-
fecrery Rete
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Assumption 1: No Counterparty Credit Risk Il

@ Let Q(t, T) be the survival probability of the counterparty, i.e.

a. Q(t, T) is the probability that being alive at time ¢ she will be still alive at
time T;

b. Therefore 1 — Q(t, T) is the so called default probability, i.e. the probability
of defaulting between t and T.

@ The risk-free value of the contract is clearly
RF(t) = P(t, T2) X F(t, T1, T2) X AT, Ty

@ The present value of the expected loss is called credit value adjustment
(CVA) and is computed according to the following expression

CVA(t) =(1-Q(t, T2)) x (1= R) x P(t, T2) x F(t, T1, T2) X a1y T,

@ By difference between risk-free value and CVA of the contract we obtain the

value of the defaultable contract ¥ A%WM no wwl, . o
thore 1o hot olepenchnly betwen Tt
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Assumption 1: No Counterparty Credit Risk Il

@ We can rewrite it as
P(t, To) x F(t, Ty, To) x a1, X (1= (1= Q(t, T2)) x (1=R)),
or, introducing an adjusted discount factor
P(t, T2) = P(t, T2) x (1 = (1= Q(¢£, T2)) x (1 = R)),
the value of the defaultable contract becomes
P*(t, To) x F(t, T1, T2) X &1y 75,

that looks very similar to the risk-free version.
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Assumption 1: No Counterparty Credit Risk 1V

@ Under counterparty risk, the method based on forward rates should be
preferred, but using an appropriate discount factor, i.e. P* instead of P.

@ P* is obtained by correcting the risk-free discount factor by a quantity
related to the probability of default and to the loss given default, i.e. 1 — R.

© Risk-adjusted discount factors are then used for discounting.

© The above result holds under the assumption of independence between
interest rates and default.
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Example (Pricing a defaultable contract)

We want to price a 6x9 defaultable contract, with face value of 1000 USD.

@ The risk-free discount factors for 6m and 9m are 0.98 and 0.97. The 9m
survival probability of the issuer is 0.99. The recovery ratio is 0.4. The 6x9
forward rate is (0.98/0.97 — 1)/0.25 = 4.12%

LGD= 0 b

@ The risk-free value of the contract is

0.97 x 4.12% % 0.25 x 1000 = (0.98 — 0.97) x 1000 = 10.
@ The CVA of the contract is
0.97 x (1 —-0.99) x (1 —0.4) x 4.12% x 0.25 x 1000 = 0.06.

@ The defaultable value of the contract is 10 — 0.06 = 9.94.

@ We can also compute an adjusted discount factor
P* =0.97 x (1 —(1—0.99) x 0.6) = 0.96418,

so that the value of the defaultable contract is

0.96418 x 4.12% x 0.25 x 1000 = 9.94.
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Assumption 2: LIBOR tenor vs contract tenor

@ If the contract resets at time T7 and pays at time Tp, but the underlying is a
LIBOR with different tenor, L( Ty, T3) for example, the formula does not
hold anymore

? L(T]_, T3) X X1, T>
e T EN
t 1 T2

(Value Date) (Reset Date) (Payment Date)

@ The point is that 14 L( Ty, T3) X a7y, 7, is not worth anymore 1 in Ty, but

1+ L(T]_, T3) X &1, Ty
1+ L(Tl, T2) X ‘XTI,T2.

@ Therefore, we cannot discount it back to t: as seen from t it is a random
amount.
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Assumption 3: Payment and Reset in Arrears |

Reset in Advance and Pay in Arrears

‘ T1 Reset Date T> Payment Date ‘

| 417 |
! 1
| L(T1,T2) =3% | — | Coupon(Ty) =3% X ar, 1, xN |

Reset and Pay in Arrears

‘ T1 Reset & Payment Date ‘ ar, 7, ‘ T> Next Reset & Payment Date ‘
{ {

| L(T1, T2) = 3% | | L(T2, T3) = 2.8% |
4 {

| Coupon(Ty) =3% x ar, 1, X N | | Coupon(Tz) =2.8% X ar, 75, X N |

(@©Gianluca Fusai (Cass ) Most Important Formula SMM269 20/121



Assumption 3: Payment and Reset in Arrears |l

@ If the contract resets and pays at time T1, the fundamental formula does not
hold anymore.

@ The cash flows are as in the figure.

? L(Ty, T2) X ary T,

(mmmmmm o m - — o ~

t 1 T2
(Value Date) (Reset & Payment Date)

@ The point is that L(Ty, Tp) X &T,,7, is a random amount as seen from time
t.

@ Therefore, we cannot simply discount it back to t.
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A Question
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A Question |

@ The most important formula says that the price of the floating amount
V(Tg) = L(Tl, Tg) X KT, Ty
that resets in T1 and is paid in T is

V(t)=F(t Ty, T2) x a(T1, T2) % P(t, T2)
—— — ———— N———
forward rate accrual factor  T,— discount factor

@ Is this formula consistent with pricing via expected discounted payoffs?

L(Ty, T2)
Ee {I\/IMA(Tz) X 8T Ty

where ,
MMA(T) = et r(s)ds

is the T value of a unit of money invested in t.
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A Question Il

The Question

So the question is to show why the following equality

L(T]_, T2> X X1y, Ts
efth r(s)ds

E¢

] = P(t, Tz) X F(t, Tl, T2) X&T,T)

holds.
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Using the Most Important Formula
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Question

Problem (Fair Value of a spot starting floating leg)

We receive every three months, up to 12 months, an amount depending on the 3
months LIBOR rate that resets 3 months earlier, i.e. at time T; we have

L(Ti—1, Ti) x a1, ;. 7))

and T,' — T,',l = 0.25.
Determine the fair market value of this amount, given the following term structure
of discount factors

Months 0 3 6 9 12
P(t,T) 1 099 098 0982 098
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Answer

Solution (The contract cash flows)

We have the following cash flows

Table: Cash Flows of the contract

Reset T;_1 Payment T; Cash Flow Fair Value
0 0.25 L(0,0.25) x 0.25 ?
0.25 0.5 L(0.25,0.5) x 0.25 ?
0.5 0.75 L(0.5,0.75) x 0.25 ?
0.75 1 L(0.75,1) x 0.25 ?
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Solution (Fair value of each cash flow)

Using the zcb formula, the fair value of the amount

L(Ti—1, Ti) x a7, 7

FV = P(t, T,',l) — P(t, T,').

Using the discount term structure, we can fill in the previous Table

Table: Cash Flows of the contract

T1 T; P(t, T Cash Flow Fair Value

0 025 099  L(0,0.25)x0.25 1—0.99

025 05 0985 L(0.2505)x025 0990985
05 075 0982 L(050.75) x025 0.985< 0.982
075 1 098  L(0.751)x025 0.9827 0.98

Fair Value 1-0.98
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Problem (Fair Value of a forward starting floating leg)

Let us consider the same problem as before, but the first reset date is not at the
initial time, but forward in time, say in Ty.

In this case, we have a forward starting floating leg. Its value is obtained by filling
the Table cash flows

Table: Cash Flows of the contract

T T, Pt T Cash Flow Fair Value

0 0.25 0.99 No Cash flow
0.25 0.5 0.985  L(0.25,0.5) x0.25 0.99 — 0.985
0.5 075 0982 L(05,0.75) x 0.25 0.985 — 0.982
0.75 1 0.98 L(0.75,1) x 0.25 0.982 —0.98

Fair Value 0.99-0.98
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Question

Fact (Pricing of a forward starting floating leg)

We have the following stream of cash flows

Table: Cash Flows of the contract

jﬁﬂﬂar&
%tam@x Tioa T, P(t T Cash Flow Fair Value
0 To 0.99 No Cash Flow
To T 0.985 L(Tp, T1) xa 0.99 —0.985
T Ip) 0.982 L(Tl, Tz) xa 0.985—0.982
T T3 0.98 L(Tp, T3) x &  0.982 —0.98
Fair Value 0.99-0.98

(@©Gianluca Fusai (Cass )
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Fact (Fair Value of a forward starting floating leg)

Let us consider the cash flows as in Table below, where

@ t is the value date;

@ To is the first reset date, Tg > t;

@ Tq is the first payment date;

@ The cash flow received in T; resets in T;_1;

@ Last payment occurs in T, and resets in T,_1.

T1 T; P(t, T Cash Flow Fair Value

t To P(t, To) No Cash Flow

To T1 P(t, Tl) L(To,T]_) X XTy, Ty P(t, To)—P(t, T]_)
T1 T2 P(t, Tg) L(Tl, Tz) X Dch,T2 P(t, Tl) = P(t, Tz)

T,',l T,' P(t, T,) L(T,',l, T,) X “Ti—lei P(t, T,',l) = P(t, T,')

Tnfl Tn P(t, Tn) L(Tn,]_, Tn) X ATy 1.Thn P(t’ Tnil) B P(t' Tn)
Fair Value  P(t, To) — P(t, T,)

Table: Cash Flows of the contract



Take Away 1

We can recall the main results coming from the most important formula
ZCB version

o [Single Cash Flow] The cash flow L(T;_1, T;) X at,_, T, received in T;, at
time t has a fair value of

P(t, Ti-1) — P(t, T)).

o [Floating Leg] If we receive the sequence of cash flows
L(Ti—1, T;) x a7, , 1, at times T;,i =1,---, n, this floating leg at time ¢
has a fair value of

i P(t.Ti1) — P(£,T))) = P(t. To) — P(t, Ty).

i=1
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Take Away 2

We can recall the main results coming from the most important formula
Forward Rate version
o [Single Cash Flow] The cash flow L(T;_1, T;) X at,_, T, received in T;, at
time t has a fair value of

P(t, T;) x F(t, Ti=1, Tj) X at,_,, T,

o [Floating Leg] If we receive the sequence of cash flows
L(Ti—1, T;) x a7, , 1, at times T;,i =1,---, n, this floating leg at time ¢
has a fair value of

n

Z P(t, T,') X F<tv Ti 1, Ti) XAT;_q,T;-
i=1
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Application 1
Pricing Forward Rate Agreements
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Application 1: Forward Rate Agreement |

A FRA has the cash flow as in figure below.
@ At inception t, there is no cash flow.

@ At time Ty, the long side (buyer) receives the floating rate and pays the fixed
rate F (FRA Rate).

0 (L(Ty, T2) = F) xapy, 15
e e EN
t T T2

(Value Date) (Reset Date) (Payment Date)

@ The fixed rate F is called FRA rate or simple forward LIBOR rate.
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Pricing on-the-run FRA

@ Problem: how do you set F so that the contract has a zero cost?

@ By applying the forward rate version of the formula, we see that the value of
the contract at time t is

P(t, T2) x (F(t, Ty, T2) = F) X a1y, 75

@ Therefore, at the contract inception the FRA rate must be equal to the

forward rate
F=F(t, T1, T2).
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Pricing an off-the-run FRA

In general, after inception, the contract value can be positive or negative,
depending on the evolution of interest rates.

If the current forward rate has increased (declined) since inception, the value
of a long FRA will be positive (negative).

The fixed rate has been fixed at the inception date t.

We intend to value the contract at time s,s > t.

Again, we apply the forward rate version of the important formula

FVS(Long FRA) = P(S, T2) X (F(S, Tl, T2) — F(t, Tl, Tz)) X&T, Ty
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Example (Pricing the on-the-run FRA)

@ On February 1, 2007 (today = time 0), we enter into a short 6 x 9 FRA on a
notional N = 1,000, 000 Euro.

o Compute the FRA rate.
o Compute the value of the contract after 3 months.

@ FRA rate:

EURIBOR - Fonte: wweesuribor.org
1w w Jw im am am am 5m &m im am am 16m 11m 13m
1feb D7 3587 1593 3803 3609 e 1785 1am 1478 3973 3856 L8R5 4018 4037 4081 4,080

o Relevant dates and rates:

@ August 2007: 6m Euribor = 3.923%
@ November 2007: 9m Euribor = 4.016%

0.25 1

1
1 T2 0939/ <0 E
F(0,6m,9m) = —— (—1+3'923A’X0'5 — 1) =4.12%
1+4.016%x0.75

The value of the short FRA is 0.




Example (Pricing the off-the-run FRA)

@ Value of a short FRA after 3 months (i.e. on May 2007):

EURIBOR - Forte; www.suribor.org
v 2w aw im 2m 3m 4am sm 6m Tm am m 10m 1im 1im
Ellag-p7  AsdE a4 2862 2.863 2.846 4023 4083 LELL 443 AAET 4304 424 4283 4.za7 4.306

o Relevant dates and rates:

o August 2007: 3m Euribor = 4.023%
o November 2007: 6m Euribor = 4.143%

We compute the new forward rate

1

1 TIZ2003%. <0 OF

FNEW _ 058 <1+4.0231A)><0.25 _ 1) — 4.22%
’ 1+4.143%x0.5

Then the value of the seasoned short FRA is

(4.12% — 4.22%)

1
1+4.143%x%0.5

FRAsHorT = 1ml x 0.25 x = —243.428EUR




Market Quotes

‘ ‘ Euro uUsbD Yen ‘
‘ ‘ Bid Ask ‘ Bid Ask ‘ Bid Ask ‘

3x6 222 224 | 129 133 | 007 0.11
6x9 241 242 | 157 161 0.1 0.14
9x12 264 266 | 1.94 198 | 0.15 0.19
6x12 255 256 | 1.76 1.8 0.13 0.17
12x18 | 3.05 3.07 | 259 263 | 0.29 0.33

Table: FRA Rate Quotations, October 29, 2003. Source: Il Sole 24 Ore

@ Market quotes directly forward rates.
@ Here 3x6 means: starts in 3 months and ends in 6 months.
@ Let us consider the Euro currency:

e we can lend N in 3 months time and in 6 months time we will receive back the
amount N x (1+0.022 x ).

e we can borrow N in 3 months time and in 6 months time we will pay back the
amount N x (1+0.024 x 3%).
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Building the discount curve using FRA'’s |

@ The FRA rates give information relative to the discount curve.

@ We observe that the present value in t of 1 unit of money that will be
received in To can be computed in two ways:

o We compute the present value directly up to initial time using the spot
discount factor P(t, T»)

1— P (t, T2)
N——
p.v. from T, to t.

o We compute the present value up to Ti, using the FRA rate and then the
present value to the current time using the spot discount factor P (¢, T7)

1 1

1— -
1+F(t, Tl,Tz) ({X(Tl,Tg)) 1+F(t, Tl,TQ)DL(Tl,Tz)

P (t, Tl).

p.v. from T, to Ty p.v. from T, to t
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Building the discount curve using FRA’s Il

No-arbitrage implies that

1

P(t, TQ):P(t, T]_)X 1+F(l’, T1.T2)“(T1'T2). @)

Therefore using P (t, T1) and F (t, T1, T) we can build P (t, Tp).

@ Notice that the shortest discount factor can in general be recovered from the
LIBOR rate

1
P(t.Th) = 1+L(t T)a(t, 1)’

and

F(t,t, T1)=L(t T1).
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Problem (Build the term structure of discount factors)

Given the following strip of FRA rates
FRA(0, 0, 0.5)=4.95%,
FRA(0, 0.5, 1)=5.00%,
FRA(0, 1, 1.5)=5.10%,
FRA(0, 1.5, 2)=5.20%,
build the discount curve up to 2 years.

A\

Example (Computing P (0,0.5))
Given FRA(O, 0, 0.5) we have immediately the spot discount factor P (0, 0.5)

1
P b5)=—"———— =0.9758478.
(0.05) 14-0.0495 x 0.5

Then we recursively use the relationship (2).

\




Example (Computing P (0, 1))

The 1 yr discount factor can be computed as follow

1
P(0,1) = P (0,0.
(0:1) 15 F(0.051) x05 (005

1
- 0.075847
17005 x05 < 09758478

= 0.9520466.

Example (Computing P (0,1.5))

The 1.5 yrs discount factor can be computed as follow

1
P(0 1. = P (0,1
(0.1.5) T+ FOLi5) xo05 < (O

1
- 005204
17 0.0510 < 0.5 ~ 09520466

0.9283731.




Example (Computing P (0,2))

The 2 yrs discount factor can be computed as follow

1
P(0,2) = P(0,1.
(0:2) T3 F(0.152) x05 < (019
1
- T %0.9283731
1400520 x 05 < 0928373
—  0.9048471.

Example (The term structure)

In conclusion, the term structure of discount factors is given by

Time to maturity T P (0, T)

0.5 0.9758478
1 0.9520466
1.5 0.9283731

2 0.9048471




Case Study
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Example (Using FRA rates to build the discount curve)

Trade Date: Oct. 12th, 2010 (Tuesday)

'B&ﬂﬂ maelfm
Fﬂg

Scad. ﬂEﬂLEItDHLL&ILEmd.[Jm Lett,

Ewo

fmese 204 200 206 207 M6 222 224
Imesi 206 211 207 208 B9 241 240
Imesi 210 215 208 209 Sx12 254 28
Bmesi 215 220 213 2M 12 255 2%
Zmesi 232 257 23 238 118 305 307

Build the discount curve up to 18 months. The numerical example is available in
the Excel file BasicYields.xlsm, sheet: Computing DF from FRA
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Example (1. Build the payment schedule)

Value Date: Oct. 14th, 2010 (Thursday)

Start End Tenor Start End Adjusted Days
(months) Date
0 3 3 Th, 14 Oct. 2010  Fr, 14 Jan. 2011 Fr, 14 Jan 2011 92
3 6 3 Fr, 14 Jan 2011 Th, 14 April 2011  Th, 14 Apr 2011 90
6 9 3 Th, 14 Ap 2011 Th, 14 July 2011 Th, 14 Jul 2011 91
9 12 3 Th, 14 Jul 2011 Fr, 14 Oct 2011 Fr, 14 Oct 2011 92
12 18 6 Fr, 14 Oct 2011 Sat, 14 Apr 2012 M., 16 Apr 2012 185

Notice that the first expiry is covered by a Deposit rate.
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Example (2. Compute Forward Discount Factors)

Forward discount factors are computed according to the formula

1
1+ FRA% x ¢

Period Days FRA P(t, T;, Tiy1)

0x3 92 21 0.99466
3x6 90 222 0.99448
6x9 91 241 0.99394
9x12 92  2.64 0.99330
12x18 185 3.05 0.98457

For example, the 9x12 discount factor is

1

——— = 0.99330.
1+2.64% x 360




Example (3. Compute Spot Discount Factors)

Spot discount factors are computed according to the formula

P(t, T,') = P(t, T,'_l) X P(t, T,'_l, T,').

Period Days FRA P(t, T1,Tp) P(t T)

0x3 92 21 0.99466 0.99466
3x6 90 222 0.99448 0.98917
6x9 91 241 0.99394 0.98318
9x12 92  2.64 0.99330
12x18 185 3.05 0.98457 0.96152

For example, the 0x12 discount factor is

0.98318 x 0.99330 = 0.97659.




Application 3:
Pricing FRN
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Floating Rate Note

@ A floater is a debt obligation whose coupon rate is reset at designated dates
based on the value of some designated reference rate.

@ A FRN is specified by

a number of reset dates Ty, T1, ... Tp—1,
a number of payment dates T1, Ty, ... Tp,
a nominal value N,
a formula for computing the payments at dates Ti, ... Tp, given the reference
rate that resets at dates Tgp, ... Tp_1,
@ At coupon dates:

€000

c(T)=ar_ 7 x(L(Ti—1, Ti))+6) xN,i=1,...,n—1,
o At maturity:
c(To)=(1+ar, ;,7, ¥ (L(Taz1, Tn) +6)) x N
where § is a fixed interest rate margin (spread), and L is the reference rate.

@ Notice the natural time lag between reset date T;_1 and payment date T;.
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An example of a Floating Rate Note

DES [L18 Corp DES

SECURITY DESCRIPTION Redenominates on 1/ 1/99
LEHMAN BROS PLC LEH Float 08/03 99.9385/100. 1385 BGN @13:04
ISSUER INFORMATION IDENTIFIERS 1) Euro Redenomination
Mame LEHMAN BROS HOLDINGS PLC P EEEIE] Additional Sec Info
Tupe Finance-Invest Bnkr/Brkr ISIN ¥50089931736 Floating Rates
Market of Issue EURD MTN BE number EC0171214 Identifiers
SECURITY IWFORMATION RATINGS Fatings

Country GB Currency EUR loody’s Az Fees/Restrictions
Callateral Type COMPANY GUARNT &P A Sec, Specific Meus
Calc Typ( Z21)FLOAT RATE NOTE Fitch A+ Involved Parties
Maturity 8/25/2003 Seriec EMTN | ISSUE SIZE Custom Notes

ORMAL Amt Issued Issuer Information
Coupon2.94988  FLOATING QUARTLY | EUR 450,000.00 (M) ALLQ

UARTL Ell LIB+27.5 ACT/360 Ant Dutstanding Pricing Sources
Announcement Dt B 5/98 EUR 450,000.00 (M) | 13 Related Securities
Int. Accrual Dt B/25/98 Min Piece/Increment
15t Settle Date B/25/98 1,000.00/ 1,000.00
15t Coupon Date 11/25/98 Par Amount  1,000.00
Iss Pr 99,7960 Reoffer 99, 796 BODK RUMNMER/EXCHANGE
LEH E5) Old DES

WO PROSPECTUS LONDON B6) Send as Attachment
CPN BATE=3M0 EUR LIBOR +27.5BF. MOD BUS DAY CMYTN, ALL PYMTS IN ECU UNWTIL INTRO
OF EURO (EURD 1=ECU 1). GTD BY LEHMAN BROS HLDGS INC. UNSEC’D. SERIES 518,

fustralio 61 2 9777 8500 Erozil 5511 3048 4500 e 44 20 7330 7500 Cermony 4% 63 320410
Hong kemy 852 2877 6000 Japon §1 3 3201 8900 Singapore €5 6212 1000 s 1 215 318 2000 Copyright 2003 Bloomberg L.P.
G3rd-raz-3 14-Apr-03 131925

Figure: Floating rate bond
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The bond schedule |

@ The coupon payment at date T; is equal to
27.5
C(T;) = <Reference Rate(T;_1, T;) + ) xaj 1% N.

@ The reference rate is the EUR LIBOR with a 3 months tenor. Its value at
reset date T;_1 determines the coupon amount at the payment date T;.

@ Let us suppose that the Settlement Date is April 14th, 2003. Then:
the next coupon is due on Monday, May 26th 2003;
The coupon starts to accrue on Tuesday Feb 25 2003;
The reset occurs 2 business days before, i.e. on Friday Feb 21 2003.
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The bond schedule I

@ On this date, the observed 12 month EUR LIBOR rate was set at 2.67488%.
@ Therefore the coupon to be paid on on May 26th, 2003 is equal to

90
(2.67488% + 0.275%) x 360 x 100 = 2.94988% x 0.25 x 100 = 0.7374.7

@ Here, the accrual factor aj_j ; is computed according to the ACT /360
convention, i.e. the number of days between two successive coupon dates
(adjusted for holidays and weekends) divided by 360.

@ Notice that on April 14th, 2003 we do not know the coupon that will be paid
on Aug 25th, 2003. The reference rate will be reset on May 2003.
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The bond schedule 11l

Cash Flows of a Floating Rate Note

| Settlement Date 14/04/2003
Issue Date Aug. 25th, 1998
Maturity Date Aug. 25th, 2003
Frequency 4
Current Coupon 2.94988
First Accrual Date Aug 25th, 1998
Day Count Convention ACT/ACT
Coupon Dates Adj. Coupon Date Days Coupon Notional  Tenor Cash Flow
tu 25 Feb 2003 tu 25 Feb 2003
su 25 May 2003 m 26 May 2003 90  2.94988 0 0.25 0.73747
m 25 Aug 2003 m 25 Aug 2003 91 ? 100 0.2527 100 + ? x 0.25277 x 100
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Question.

Given that the 3m EURIBOR rate on the reset date (May 22nd 2003) is equal to
2.35688%, what is the coupon payment on August 25th, 20037
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Question |

A FRN is paying EURIBOR12m~+100bp.
The coupon is due on October, 20th of each year.

@ Determine the coupons that will be paid in October 2000, 2001, 2002, 2003
and 2004.

Reset days occur four business days before the start of the coupon period.
Euribor is rounded to the second digit.

Payment occurs at the end of the coupon period (reset in advance and pay in
arrears).

Day count convention is ACT /360.

In the following Table you can read the 12m Euribor rate across different
days in October 1999, 2000, 2001, 2002 and 2003.

e Determine the coupons that have been paid over the years. (This can
be done only ex-post).

(@©Gianluca Fusai (Cass ) Most Important Formula SMM269 58/121



Question Il

Year
Day | 1999 2000 2001 2002 2003
22 3.77 3.333 3168 2.349
21 | 3.793 3.145 2.362
20 | 3.772 5.225 2.376
19 | 3.738 5.209 3.353
18 | 3.739 5.189 3.399 3.175
17 5.201 3.408 3.315 2372
16 5.194 3405 323 2338
15 | 3.755 3.427 3.203 2.308
14 | 3.714 3.165 231

Table: The Table provides the 12m Euribor rate across different days in October 1999,
2000, 2001, 2002 and 2003. Empty cells refer to weekends.
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Answer |

Year
Day | 1999 2000 2001 2002 2003
22 3.77 3.333 3.168 2.349
21 3.793 3.145 2.362
20 3.772 5.225 2.376
19 3.738 5.209 3.353
18 3.739 5189 3.399 3.175
17 5201 3.408 3.315 2.372
16 5.194 3.405 3.23 2.338
15 3.755 3.427 3.203 2.308
14 3.714 3.165 2.31

Table: 12m Euribor rate in October over different years. Bold are the payment dates

adjusted for weekends (Rule: following business day). Yellow cells refer to reset dates.
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Answer |l

The coupons are
@ October 2000:
a. The Euribor rate on Oct. 15th 1999 is 3.755%.
b. The coupon stars to accrue on Oct. 20, 1999.
c. The coupon is paid on Oct. 20, 2000 (i.e. 366 days later).
d. The coupon is equal to 3.5% x %.
@ October 2001:
a. The Euribor rate on Oct. 16th 2000 is 5.194%.
b. The coupon stars to accrue on Oct. 20, 2000.
c. The coupon is paid on Oct. 22 (Monday), 2000 (i.e. 367 days later).

d. The coupon is equal to 5.194% x :3’%7)
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Answer |l

@ October 2002:

a. The Euribor rate on Oct. 16th 2001 is 3.405%, rounded to 3.41%.
b. The coupon stars to accrue on Oct. 22, 2000 (Monday).

c. The coupon is paid on Oct. 21 (Monday), 2001 (i.e. 364 days later).
d. The coupon is equal to 3.91% x %.

@ October 2003:

a. The Euribor rate on Oct. 15th 2002 is 3.203%, rounded to 3.2%.
b. The coupon stars to accrue on Oct. 21, 2002 (Monday).

c. The coupon is paid on Oct. 20, 2003 (i.e. 364 days later).

d. The coupon is equal to 3.2% x %.

@ October 2004:

a. The Euribor rate on Oct. 14th 2003 is 2.31%.

b. The coupon stars to accrue on Oct. 20, 2003 (Monday).

c. The coupon is paid on Oct. 20 (wed), 2004 (i.e. 366 days later).

d. The coupon is equal to 2.31% x %.
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Pricing a FRN

We have to consider three components
@ the current coupon

@ the not yet resetted floating coupons

@ the face value.
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Cash Flows and Fair Value of a FRN |

Table: Cash Flows of the FRN: t is the pricing date, T1 > t is the next payment date,
Th is the bond expiry, To < t is the last time at which the lastly reset the coupon, c is
the current coupon

Ti1 T; P(t, T;) Cash Flows Fair Value
(Reset)  (Payment)

t

TO T1 P(t, T1) c X "‘Tole P(t, T1) X c X Dé-ro’-r1

T T2 P(t, T2) L(T1, T2) x a7, P(t, T1) — P(t, T2)
T 1 T; P(t, T,') L(T,',l, T,') X AT, | T; P(t, T,',l) — P(t, T,)
Th-1 Th P(t, Tp) L(Th-1, Tn) X &T, 1 Tn P(t, To-1) — P(t, Tp)
To-1 Th P(t, T,) 1 1x P(t, Tp)

Fair Value
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Cash Flows and Fair Value of a FRN 11

@ The Fair Value of the FRN is obtained by summing the present value of the

three components:

1 The present value of the current coupon
P(t, Tl) X CXATy Ty-

2 The present value of the floating payments
n
Z (t, Ti-1) — P(t, T;)) = P(t, T1) — P(t, Tp)

3 The present value of the face value at expiry

1x P(t, Tp).
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Cash Flows and Fair Value of a FRN 11l

@ Summing [1]+[2]+[3], we have

P(t, Ty) x ¢ x ary 7, + P(t, T1) —5@,/7@ +/Pe(Tn)

@ Therefore the fair value of the FRN is

[ P(t, Tl) XecXary T+ P(t, Tl) = P(t, Tl) X (1~|—C X IXT(),TI)' ]

Main Result: Pricing a FRN is like pricing a zero-coupon bond expiring
at the next coupon date (i.e. 71 ) and having a face value equal to
1+cx Xy, Tq+

@ This result is valid assuming no spread is paid on the top of the LIBOR rate.
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Example (Pricing a FRN)

Let us consider the following term structure of discount factors

Period Days FRA P(t, T1,T2) P(t, T2)

0x3 92 2.1 0.99466 0.99466
3x6 90 2.22 0.99448 0.98917
6x9 91 241 0.99394 0.98318
9x12 92  2.64 0.99330 0.97659

@ We have to determine the market value of a FRN having quarterly coupons
and expiring in 12 months, current coupon is 2.1%.

@ We have

2
0.99466 x (1 +0.021 % 3?60) = 0.99466 x 1.0054 =1

@ Why exactly 1?

(@©Gianluca Fusai (Cass ) Most Important Formula SMM269 67 /121



Question

Using the same information as before, price a FRN having semi-annual coupons
and expiring in 9 months.

OQ(%L& ( 1+ Z']z% dTo;T\j

3
e +4 Ti T)' >
° A__J—’J’/d_‘
—ZW\ 0 Im qn\
\_/ \_/7
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Answer

ey — SHANi260T 60z



Including the spread

@ If the floating coupon due at time T; includes a spread component
(L<Ti—lr 7-1) + 5) D(T,',l,T,"

we need to modify the pricing formula considering that
1 the current coupon to be paid in Ty already includes the spread;

2 therefore, the present value of the spread component is like the present value
of an annuity starting in T» and ending in T,

n

4 Z P(t, TH)at,_,. T,
i=2

@ Therefore the present value of the floating rate note paying LIBOR+Spread is

FRN(t) = P(t, T]_) X (1 +c X ’XTO,Tl) +4 2 P(t, T,‘)CKTFI’TI..

':2\
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Take Away: Pricing a non-defaultable FRN |

1. Pricing of non-defaultable FRN at a generic date. The present value of a
default-free floating rate note is

n
P(t, Tl) X (1 +0c-,-0’-,-1 X C) + Z P(t, T,') X @jq1,j X 0,
i=2

where ¢ = L (Tg, T1) + & is the current coupon, i.e. the coupon (inclusive of
the spread), determined in Tg and to be paid in T3 Tog < t < T3.
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Take Away: Pricing a non-defaultable FRN 11

2. Pricing of a non-defaultable FRN with zero-spread. If there is no spread
component, the previous formula simplifies into

[ P(t, Tl) X (1+“T0,T1 X C), ]

where ¢ = L (Tg, T1) is the current coupon, i.e. the coupon determined in
To and to be paid in T; Tog <t < Tj.
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Take Away: Pricing a non-defaultable FRN 111

3. Pricing of non-defaultable FRN at coupon dates. At the reset date, i.e.
t = Ty, the present value of a default-free floating rate note simplifies into

n
1+ Z P(t, T,') X ®jq1,i X 0,
i=1

indeed P (t, T1) X (1+ar, 1, X c) =P (t=To T1) %
(T4 ar,7 X (L(To, T1) +6)) =1+ P(t = To, T1) a1y, 1,6.
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Take Away: Pricing a non-defaultable FRN IV
X Mo Countafparty Vidk
X No (g nggv\ et cnd payient

_ ved = Tepor He couport
X Tewor of The fefefer® 0L doa ? 4

4. Pricing of non-defaultable FRN at coupon dates and zero spread. In
addition, if 6 = 0, the FRN at payment dates (i.e. t = Tg) is quoted at par

5. The duration of a floating-rate note is the time to wait until the next reset
period, at which time the FRN should be at par

9 G T
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(@©Gianluca Fusai (Cass ) Most Important Formula

SMM269 74 /121


Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing


Application 4:
Pricing Swaps
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Swap |

Table: Cash Flows of the Payer Swap: t is the pricing date, To > t is the first reset date,
T1 > tis the first payment date, T, is the swap expiry, S(t) is the fixed rate (swap rate)

Tio1 T, P(t, T Floating Cash Flows Fixed Cash Flows

t 0 0
To Ti P(t,Ty) L(To, T2) X a1y, 13 S(t) X a1y
Ty T 'D(tv T2) L(Tl T2) X KTy, T S(t) X KTy, T

Ti1 T; P(t, T,') L(T, 1, T) X KT, 1, T; S(t) XOT, 1, T;

Toor Tn P(t,Tn) L(Th-1, T,,) xar, 1, S(t)xar, 7T,

Fair Value
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Swap I

@ The Fair Value of the Payer Swap is obtained by taking the difference of the
present value of the two components:

1 The present value of the floating leg:
P(t, To) — P(t, Tp).

2 The present value of the fixed leg: /4 M

e g

@ Therefore the value of the payer swap at inception is

P(t, To) — P(t, Tp) — S(t) X Z P(t, T;) X a1, ,.7.-
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Swap Il

@ At inception, the swap rate S(t) is chosen so that the contract has zero value
pr (FL)
t, To) — P(t, Ty
i1 P(t, T;) X aTi—eri.

5(t) =

v (Fieed L)

@ S(t) is called forward swap rate.

o If the first reset occurs in t, i.e. t = T, S(t) is called spot swap rate and is
given by

1—P(t, Tn)

S(t) = .
W= S T xar 7
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Example (Computing the swap rate)

Let us consider the following term structure of discount factors

Period Days FRA P(t, T1,T2) P(t, T2)

0x3 92 2.1 0.99466 0.99466
3x6 90 222 0.99448 0.98917
6x9 91 241 0.99394 0.98318
9x12 92  2.64 0.99330 0.97659

@ We have to determine the fixed swap rate on the payer swap. First payment
resets in 3 months and last payment occurs in 12 months. Payment
frequency is quarterly.
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Example (Fair Value of the two legs)

@ The floating leg is worth
0.99466 — 0.97659 = 0.0181.

@ The fixed leg is worth

90 91 92
S x (0.98917 X 360 +0.98318 x 360 -+ 0.97659 x %> = S(t) x 0.7454

@ The forward swap rate is

(1) = 0.0181
~0.7454

= 2.42%.
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Seasoned Swap

@ In a seasoned swap, the payment due at time T7 has been already resetted
inTg < t, and only the cash flows from T, onwards are unknown.

@ In this case, the fair value of the IRS is (assuming fixed and floating cash
flows have the same frequency and the same day count convention)

(a) Pt T1) (L(To, T1) = K) a7y
(b) +P(t, T1) — P(t, Tp)

© CKYP( Tar, o7
2

where
(a) =present value of the known cash flow,
(b) =present value of the remaining floating payments,
(c) =present value of the remaining fixed payments.
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Example (Pricing a seasoned swap)

@ We have to price an IRS with semi-annual cash flows, expiring in 9 months.
The fixed rate is 3%. The 6m LIBOR that resetted 3 months ago was 3.5%.

@ Given the following term structure of discount factors price the seasoned swap

Term (months) P(t, T)

3 0.99466
6 0.98917
9 0.98318
12 0.97659
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Example (...(continued))

@ The swap has still 2 payment dates: 3 and 9 months.
@ (a): The present value of the payment due in 3m is

0.99466 x (3.5% — 3%) x 0.5 = 0.00249.
@ (b): The present value of the floating payment due in 9m is
0.99466 — 0.98318 = 0.01148.
@ (c): The present value of the fixed payment due in 9m is
0.98318 x 3% x 0.5.

@ Summing up, the present value of the seasoned swap is

(a) + (b) — (c) = 0.00249 + 0.01148 — 0.01475 = —0.00078.
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A Case Study
Pricing an Interest Rate Swap
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Example (1. Pricing a Swap)

See Excel file: FI_Swap.xlsm, Sheet: Pricing a Swap

Table: Swap Characteristics

Inception Date Nov. 5th 2004

Maturity Date Nov. 5th 2008

Trade Date Feb. 4th 2005 (Friday)

Value Date Feb. 8th 2005

Frequency fixed payments S.A.

Frequency floating payments S.A.

Basis Fixed Leg 30/360

Basis Floating Leg ACY/360

Swap Rate 4.50% quoted on inception

6m LIBOR rate 4.25% quoted on reset date




Example (2. Market Data)

Table: Term structure of spot rates (annually compounded) and discount factors on the
value date. Bold dates are swap payment dates adjusted for weekends. Payment dates

are set with reference to the inception date and NOT the value date.

Payment Dates Maturity (days) Spot Rates DF
05/05,/2005 86 4.00% 0.99080
07/11/2005 272 420%  0.96981
05/05/2006 451 4.30% 0.94931
06/11/2006 636 4.50% 0.92617
07,/05/2007 818 480%  0.90026
05/11/2007 1000 5.00% 0.87488
05/05,/2008 1182 5.00% 0.85385
05/11/2008 1366 5.00% 0.83311

In the Table, we have for example 0.83311 =

1

1366 -
(140.05) 365
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Example (2. Pricing the fixed leg)

Table: Computing the Present Value of the Fixed Leg

Payment Dates DF Swap Rate Accrual Factor DF x S x AF
05/05,/2005 0.99080 4.5% 0.50000 0.02229
07/11/2005 0.96981 4.5% 0.50556 0.02206
05/05/2006 0.94931 4.5% 0.49444 0.02112
06/11/2006 0.92617 4.5% 0.50278 0.02095
07/05/2007 0.90026 4.5% 0.50278 0.02037
05/11/2007 0.87488 4.5% 0.49444 0.01947
05/05,/2008 0.85385 4.5% 0.50000 0.01921
05/11/2008 0.83311 4.5% 0.50000 0.01874

PV(fixed Leg) 0.16422
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Example (4. Pricing the Floating Leg)

We price the floating leg using the formula (('l'oT'llH)) — P(t, T,). Ip particular, we
have =

@ P (Tp, T1) has been computed using the LIBOR rate at the last reset date
(the inception date)

1
P (T, T = 0.97908
(1) = 14 0.0425 x 181
@ The remaining discount factors come from the previously computed term
structure.
Start Date End Date  Maturity (days) Discount factor
P(tp, T1) 05/11/2004 05/05/2005 181 0.97908
P(t, T;) 08/02/2005 05/05/2005 86 0.99080
P(t, T,) 08/02/2005 05/11/2008 1366 0.83311
PV (float leg) 0.17887
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Example (5. Pricing the Payer swap)

The market value of the swap is

(0.17887 — 0.16422) x 1,000,000 = 14, 644.

Valuation

PV(fixed) 0.16422
PV(float) 0.17887
Nominal 1,000,000

Swap Value 14,644




Swap Rate x ﬂ x 1,000, 000.

360

Example (6. Computing the fixed cash flows)

The Fixed payments are computed according to

Start Date End Date  Accrual Factor Swap Rate Fixed Payment
05/11/2004 05/05/2005 0.50000 4.5% 22,500
05/05/2005 07/11/2005 0.50556 4.5% 22,750
07/11/2005 05/05/2006 0.49444 4.5% 22,250
05/05/2006 06/11/2006 0.50278 4.5% 22,625
06/11/2006 07/05/2007 0.50278 4.5% 22,625
07/05/2007 05/11/2007 0.49444 4.5% 22,250
05/11/2007 05/05/2008 0.50000 4.5% 22,500
05/05/2008 05/11/2008 0.50000 4.5% 22,500




Example (7. Projecting the floating cash flows)

@ The first Rate is the LIBOR at the reset date.
@ The remaining rates are the simple forward rates computed out of the
discount curve.
@ The Floating payment is computed according to
Rate x T x 1,000, 000
360 ' '

Start Date End Dates  Days Rate Float Pyt
05/11/2004 05/05/2005 181 4.2500% 21,368
05/05/2005 07/11/2005 186  4.1902% 21,649
07/11/2005 05/05/2006 179  4.3424% 21,591
05/05/2006 06/11/2006 185  4.8618% 24,084
06/11/2006 07/05/2007 182  5.6926% 28,779
07/05/2007 05/11/2007 182  5.7390% 29,014
05/11/2007 05/05/2008 182  4.8712% 24,627
05/05/2008 05/11/2008 184  4.8718% 24,901




Swap Cash Flows

40,000
30,000
20,000
10,000

0
-10,000
-20,000
-30,000

m Float Pyt ®Fixed Payment




Example (8. Net cash flows)

Start Date End Date Float Pyt  Fixed Payment ‘ Net DF PV
05/11/2004 05/05/2005 21,368 22,500 -1,132 0.99080 -1,122
05/05/2005 07/11/2005 21,649 22,750 - 1,101 0.96981 - 1,068
07/11/2005 05/05/2006 21,591 22,250 - 659 0.94931 - 625
05/05/2006 06/11/2006 24,084 22,625 2,359 0.92617 2,185
06/11/2006 07/05/2007 28,779 22,625 6,154  0.90026 5,540
07/05/2007 05/11/2007 29,014 22,250 6,764  0.87488 5,918
05/11/2007 05/05/2008 24,627 22,500 2,127 0.85385 1,816
05/05/2008 05/11/2008 24,901 22,500 2,401 0.83311 2,000
‘ 14,644




Swap Net Cash Flows

8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

-1,000 1 2 3 4 5 6 7 8
-2,000

Net
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Conclusion

@ We have seen how to price a flow contract

@ We have applied the formula to price several contracts, such as
a Forward Rate Agreements;

b Floating Rate Notes;

c Interest Rate Swaps.
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Appendix
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Basic Products: Interest Rate Swaps

IRS consists in an agreement between two counterparts to exchange a series
of cash flows on pre-agreed dates in the future.

@ The most commonly traded swap (plain vanilla interest swap)
requires one side to pay a fixed rate and the other to pay a floating rate.

Payer swap: pays fixed and receive floating,
Receiver swap: pays floating and receive fixed.

This is fixed versus floating swap with the floating payment based on either
three-month, or six-month or 1 year LIBOR rate.

There are no cash-flows at inception.

The fixed rate is called the swap rate, while the floating rate is typically a
Libor rate.
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Example (Plain Vanilla US Interest Swap)

@ Floating Payments

are tied to three months LIBOR;

are made at three months intervals;

determined three months and two days before each payment date;
day count is actual/360.

@ Fixed Payments

e are made at six months intervals.
e day count is 30/360.
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Example (US Swap with 2 years tenor)

Table: Payment dates and cash flows for a US swap with 2 years tenor

Fixed Floating Net Cash Flows
0
0.25 X —N x L(0;0.25) x 0.25
0.5 X X N x K x0.5— N x L(0.25;0.5) x 0.25
0.75 X —N x L(0.5;0.75) x 0.25
1 X X N x K x05—N x L(0.75;1) x 0.25
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Example (Plain Vanilla Euro Interest Swap)

@ Floating Payments
o are tied to six months LIBOR;
o are made at six months intervals;
o determined six months and two days before each payment date;
e day count is actual/360.

@ Fixed Payments

e are made at annual intervals.
e day count is 30/360.
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Example (Euro Swap with 2 years tenor)

Table: Payment dates and cash flows for a US swap with 2 years tenor

Fixed Floating Net Cash Flows
0
0.5 X —N x L(0;0.5) x 0.5
1 X X NxKx1—NxL(05;1)x05
15 X —N x L(1;1.5) x 0.5
2 X X NxKx1—NxL(152)x05
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Contract basic features |

@ N : nominal
@ Business day convention
o Dates:
o t: settlement date (or effective date)
e Tg,..., Th_q: reset dates
e T1,..., T, : payment dates
o T, : maturity (or termination date)
@ Swap Tenor: the time distance (in years) between first reset and last payment
date, i.e. T, — Tp.
@ Spot Starting Swap: if t = Ty, i.e. the first reset occurs on the Value Date.
@ Forward Starting Swap: if t < Ty, i.e. the first reset is forward respect to the

Value Date.
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Contract basic features |l

o Fixed leg (sequence of floating payments):

o K=S5(t, Ty, Tn) : swap rate (fixed rate)
o frequency
o day count af’

@ Floating leg (sequence of fixed payments):

o floating rate (e.g., Libor)
o frequency

o day count aft

@ Day count conventions and payment frequencies can be different on the two
legs.
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Time profile and cash flows of a payer IRS

Payer IRS Cash Flows
t Trading date
To 15t reset date

N (aft 1 L(To, Ta) — ol 1K)

N (a%q TiZ(T"_l’ Ti) = [X";_'LL TIK)

=
&
N L

Tn N(aft P LTy, To) = ol 1K)

@ Notice that in a spot starting swap (t = Ty) the first payment is known at
inception, since the first floating rate resets at Ty, while all future cash flows
remains random.
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Time profile and cash flows of a receiver IRS

Receiver IRS Cash Flows

t Trading date

To 15t reset date

T\ N( %TIK—aTOTlL(TO,T1)>
RN
Ti-1

T; hV N(“’;{AT;K_“,;'L lTL(TiflvTi)>
Tiv1 N\

N

T, N(af K —afl o L(Th1 Th))
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Table: Payment dates on different swaps

Tenor 2yr Tenor 1yr Tenor 1yr
Spot Starting Fwd Starting in 1y Fwd Starting in 1y
Fixed  Floating Fixed Floating Fixed Floating
Frequency Q SA Q SA SA SA
0 0 0
0.25 X 0.25 0.25
0.5 X X 0.5 0.5
0.75 X 0.75 0.75
1 X X 1 1
1.25 X 1.25 X 1.25
1.5 X X 1.5 X X 1.5 X X
1.75 X 1.75 X 1.75
2 X X 2 X X 2 X X
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Example (1. Cash flows in a four-year vanilla swap)

o Fixed payments are based on a 4.6% semi-annual rate.
@ Floating payments are based on 6-month Libor.

@ The initial Libor rate is known to be 2.8% at the outset, so the swap’s first
payment is certain.

@ Subsequent Libor rates are not known at the outset. Note that the final Libor
rate at 4.0 years is not used to calculate any of the swap's cash flows.

@ The last column indicates cash flows to the receive-fixed party.
@ Cash flows to the receiver-floating party are the negatives of these.

@ All cash flows are in millions of dollars. Note also how all USD 100MM
principal payments net to zero.




Example (2. (continued))

‘ Time (yrs) 6M Libor ‘ Fixed Leg Float. Leg Net ‘
0 2.8 -100 -100 0
0.5 3.4 23 14 0.9
1 L 1.7 0.6
15 4.2 h 2.2 0.1
2 5 2.3 2.1 0.2
2.5 5.6 23 2.5 -0.2
3 5.2 2.3 2.8 -0.5
3.5 4.4 2.3 2.6 -0.3
4 3.8 102.3 102.2 0.1

Table: First column: relevant dates; Second column: 6M LIBOR rates at reset dates;
Third column: Fixed leg payment, e.g. in the cyan cell 4.6% x 0.5 x 100 = 2.3; Fourth

column: Floating leg payment, e.g. in the gree cell 4.4% x 0.5 x 100 =
column: Net cashflows (receiver swap).

; Fifth
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Uses of IRS
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Hedging with swaps |

@ IRS allow to optimize the financial condition of debt (when firms have
objective and conditions on fixed /floating rate debt).

a. Hedging of fixed-income portfolios against any change in the yield curve by
exploiting the DVO01 of the swap.
Example. We have a risky position RP with interest rate risk measured by a
DVO0lgp. Let us consider a IRS having an interest rate exposure as measured
by DV01,rs. We can build a portfolio with low interest rate exposure by
entering into n IRS so that

DVO0lgp + nDVO01l,zrs =0,

__ DVolgp
~ DVOlgs
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Hedging with swaps Il

b. They allow to convert the financial conditions of assets and liabilities
@ In a plain vanilla IRS there is no exchange of principal.

@ However, if we assume that the nominal is both received and paid at the
swap maturity, then a swap can be replicated by a portfolio of a floating-rate
and a fixed-rate bond.

PAYER IRS = FLOATING-RATE BOND - FIXED-RATE BOND

RECEIVER IRS = FIXED-RATE BOND - FLOATING-RATE BOND
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Hedging with swaps IlI

@ For example, we can transform a FRN in a Fixed-rate bond by entering a
receiver swap (selling a payer swap):

FIXED-RATE BOND = FLOATING-RATE BOND + RECEIVER IRS
@ Viceversa, we can transform a Fixed Rate Bond into a Floating Rate one:

FLOATING-RATE BOND = FIXED-RATE BOND + PAYER IRS
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Swap rates and market quotations

@ Actually the market quotes the spot starting swap rate S (t, t, T,,) for
different maturities T, :

Euro GBP Sterling SwFr us Yen
Tenor Tp Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask
1lyr 1.95 2 0.99 1.02 0.45 0.51 0.36 0.39 0.32 0.38
2yr 2.34 2.39 1.62 1.66 0.86 0.94 0.76 0.79 0.34 0.4
3yr 2.63 2.68 2.06 21 1.18 1.26 1.25 1.28 0.38 0.44
4yr 2.85 29 243 2.48 1.45 1.53 1.72 1.75 0.46 0.52
5yr 3.02 3.07 2.74 2.79 1.69 177 213 2.16 0.55 0.61
6 yr 3.16 3.21 2.98 3.03 1.89 1.97 2.48 251 0.67 0.73
Tyr 3.28 3.33 3.18 3.23 2.05 213 2.76 2.79 0.81 0.87
8yr 3.38 3.43 3.35 3.4 2.17 2.25 2.99 3.02 0.95 1.01
9yr 3.46 351 3.48 3.53 227 2.35 3.18 321 1.08 1.14
10 yr 3.54 3.59 3.59 3.64 2.36 2.44 3.34 3.37 1.21 1.27
12 yr 3.68 3.73 3.74 3.81 2.49 2.59 3.58 3.61 1.42 15
15 yr 3.84 3.89 3.88 3.97 2.61 2.71 3.82 3.85 1.67 1.75
20 yr 3.92 3.97 3.95 4.08 2.67 2.77 4.01 4.04 1.93 2.01
25 yr 3.87 3.92 3.96 4.09 2.67 277 4.1 4.13 2.03 211
30 yr 3.78 3.83 3.95 4.08 2.65 2.75 4.15 4.18 2.08 2.16

Table: Bid and ask rates as of close of London business (May 2nd, 2011). US $ is quoted
annual money actual/360 basis against 3 month Libor. £ and Yen quoted on a semi-annual
actual /365 basis against 6 month Libor. Euro/Swiss Franc quoted on annual bond 30/360 basis
against 6 month Euribor/Libor with exception of the 1 year rate which is quoted against 3
month Euribor/Libor. Source: ICAP plc. Historical quotes downloadable at
http://markets.ft.com/RESEARCH/Markets/DataArchive
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Swap rates and market conventions

o Different payment frequencies, compounding frequencies and day count
conventions are applicable to each currency-specific interest rate type.

Currency EURO JPY USD GBP CHF
EURIBOR LIBOR or
Index or LIBOR TIBOR LIBOR LIBOR LIBOR
FIXED LEG
A for 1yr
Payment freq. A S/A S/A then S/A A
Day Count 30 ACT 30 ACT 30
Convention 360 365 360 365 360
FLOATING LEG
3m for 1yr 3m for 1yr
Payment freq. then 6m 6m 3m 6m then 6m
Day Count ACT ACT ACT ACT ACT
Convention 360 360 7360 365 360
Business Days Target Tokyo New York London Zurich
Roll Day modified following

Table: Quotation Basis for Interest Rate Swaps
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Euro Swap rates: market conventions

N191 Curncy DES

QUOTE: Annual Settlement & Compounding vs. 6 month EURIBOR (ACT/360)
Day Count: 307360

Freguency! Intraday

Trading Day: 01:00 to 13:00 NY time

Historu: Dailu O/H/L/C

Source: Yarious (Composite rate is best hidsask from latest guoted rates.)

Australio 61 2 9777 8500 Brozil 5511 3048 4500 rope 44 20 7330 7500 Germony 43 69 920410
Hong Kong 852 2977 &000 Japan 81 3 3201 8900 Singapore 65 6212 IDDD s 1 212 318 2000 Copuright 2007 Bloombery L P
GFP04-£38-1 09-Mor—07 17:12:14
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USD Swap rates: market conventions

N191 Curncy DES

Quote: Semi-annually fixed rate ws. 3 month U.S. § LIEDR
Day Countisee pgl

Freguency! Intraday

Trading Day: 24 hours

Historu: Dailu O/H/L/C

Source: Yarious (Composite rate is best hidsask from latest guoted rates.)

Australio 61 2 9777 8600 Brozil 5511 3048 4500 rope 44 20 7330 7500 Germony 43 69 520410
Hong Kong 852 2977 &000 Japan 81 3 3201 8900 Singapore 65 6212 IDDD s 1 212 318 2000 Copuright 2007 Bloombery L P
GFPO04-£38-2 09-Mor-07 17:14:53
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GBP Swap rates: market conventions

N191 Curncy DES

Quote: Semi-annual settlement & compounding ws. 6 month Sterling LIEDOR
Day Count: ACT/365

Freguency! Intraday

Trading Day: 01:00 to 13:00 WY Time

Historu: Dailu O/H/L/C

Source: Yarious [(Composite rate is best hidsask from latest guoted rates.) GEF
Swap settlement is Same Day.

Australio 61 2 9777 8500 Brozil 5511 3048 4500 rope 44 20 7330 7500 Germony 43 69 920410
Hong Kong 852 2977 &000 Japan 81 3 3201 8900 Singapore 65 6212 IDDD s 1 212 318 2000 Copuright 2007 Bloombery L P
GFPO04-£38-3 09-Mor-07 17:17:20
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Yen Swap rates: market conventions

N191 Curncy DES

Quote: Semi-annual fixed rate vs. 6 manth Yen LIBOR (ACT/365)

TIBOR ohjects are guoted as: Semi-annual fixed rate ws. 6 month TIROR (ACT/360)
Dauy Count! ACT/36G

Freguency: Intraday

Trading Day: 24 hours

Historu: Dailu O/H/L/C

Amount: Standard amount for gquoted rates is 5 hillion yen

Spurce: Yarious (Composite rate is best hidsask from latest guoted rates.!

Australio 61 2 9777 8500 Brozil 5511 3048 4500 rope 44 20 7330 7500 Germony 43 69 920410
Hong Kong 852 2977 &000 Japan 81 3 3201 8900 Singapore 65 6212 IDDD s 1 212 318 2000 Copuright 2007 Bloombery L P
GFPO04-£38-3 09-Mor-07 17:25:52
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Pricing away from inception
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How to value an IRS after initiation |

@ The value of a swap though customarily is set to zero at inception needs not
have zero value after inception.

@ Let t be the pricing date and Ty the last reset date (T < t).
@ The fixed leg has value

KxZoc P(t, T;).

@ The floating leg has two components
o the cash flow due in T7 that resetted in Ty, so it has value

P(t, T1) x L(To, Ty) &t

o the forward starting floating leg with first reset in Ty and last payment in T,

has value
P(t, T1) — P(t, Tp).

o the floating leg is worth
P(t, T1) (1 +L(To, T1) a%ﬂ) — P(t, Ty).
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Value of a Payer Swap away from inception

A payer swap contract having a fixed rate K and that has been set before the
current date t has value:

P(t, T1) (1+L(To, Tr) &Rt 1) = P(t, To) = K % Zoc (t.T3).

i.e. the swap can be replicated using
@ a long zcb expiring in Ty having face value 1+ L (T, T1) "‘%,Tli
@ shorting a fixed-rate bond having fixed rate K.

Remark If t = Ty, the value of the floating leg simplifies to 1, and we get the
known result at inception

1— P(t, Kszx P(t T;) =0.
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Outline

@ Interest Rate Risk

© Hedging using DVO01

© Portfolio Hedging using DVO1
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Reading List

Required Readings
@ Any Standard Fixed Income Book.

Accompanying Excel files
o Fl_BasicYields.xls
o Fl_InterestRateRisk.xls
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Interest Rate Risk

@ The interest rate risk of a security may be measured by how much its price
changes as interest rate changes.

@ Measuring the exposure to interest rate risk can be interesting at least for
two reasons:

© hedging: matching the exposure to interest rate risk of the assets with the
interest rate risk of the liabilities;
@ exploiting views: given a view avout future changes in interest rates to

determine which securities (or combination of securities) will perform best if
their view does, in fact, obtain.
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DVO01: Dollar Value of 1 basis points

@ The DVO01 (or BPV) of the bond refers to the loss related to 1 basis point
shift in the risk factor.

@ The most common assumption is to take as risk factor the spot rate relative
to maturity T;.

@ So we can define the DVOL1 relative to the i-th spot rate as

oB
DV01l; = ———dY;
01, v @V
where the negative sign gives a positive value to the DV01.

@ In practice, we never compute partial derivatives but we approximate them
via finite differences, and we set the shock dY; equal to 1 b.p., so that

AB 1 .
DVOLi = =3y *T0.000'  L- 6\77”
1 59 = \qﬂe v PVo| = ’\/e x 90|
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DVO1 (or BPV) : Numerical approximation

@ A centered difference approximation to the DVO01 calculation is done via the
following incremental ratio
B(y" +4y) —B(y"—Ay) 001
2Ay 100

DV0l = —

Example (Numerical Computation of the DV01)

@ Let us consider a Bond with 3 years to maturity, 3% coupon, semi-annual coupons and

yield to maturity 4%. We can build the following Table. The DVO1 is 7%.

YTM 4.01% 4.00% 3.99%

Payment Dates (years) Cash Flows PV(CF) PV(CF) PV(CF)
0.5 0.015 0.0147 0.0147 0.0147

1 0.015 0.0144 0.0144 0.0144

15 0.015 0.0141 0.0141 0.0141

2 0.015 0.0139 0.0139 0.0139

2.5 0.015 0.0136 0.0136 0.0136

3 1.015 0.9021 0.9023 0.9026

B(y+dy) B(y) B(y—dy)
Gross Price 0.9728 0.9731 0.9733
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@ The centered approximation to the DVO1 computation is

0.9728 — 0.9733 1

3% 0001~ 10000 _ 00003

DV01 = —

@ This is the bond loss due 1 bp change in the term structure

@ This means that if the term structure moves up by 20 bps, the bond price will

change by the amount
—0.0003 x 20

o If the term structure moves down by 15 bps, the bond price will change by

the amount
—0.0003 x (—15).
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Hedging using DVOL1 |

@ We can hedge a risky position using DVO1.
@ We proceed as follows:

© Suppose we have a risky position RP with interest rate risk measured by a
DVO0lgp.

@ Let us consider an interest rate derivative, e.g. an IRS, having an interest rate
exposure as measured by DV01gs.

© We can build a portfolio with low interest rate exposure by entering into n IRS
so that the exposure of the entire portfolio is 0

DVO0lgp + nDVO01,zs = 0,

_ DVOlgp
~ DVOljs’
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Hedging using DVOL1 I

Example (Hedging with DVO01)

A bond, with notional 1ml USD, has a DV01 equal to 300 USD. An payer IRS, of

notional 10ml, has a DVO01 of -200. In order to hedge the interest risk of the bond
we need to buy

300

i.e. 15 ml of notional (=1.5x10ml).
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Hedging using DVOL1 Il

@ This works if the risk factors RF affecting the values of the two risky positions
are perfectly correlated, indeed the profit and loss of the hedged portfolio is

P&L = ARP(t) + nA/RS(t) = —DVO0lrpARFrp — nDV01,rsARFirs
and if ARFrp = ARFirs = ARF, we have
P&L = *(DVOIRP - nDVOlIRs)ARF

and with the above choice of n we are perfectly hedged.

@ In general, the assumption of perfect correlation is not fully true and we are

left with some basis risk: market risk is replaced by basis risk.

@ A possible procedure to cope with it is to find a minimum variance hedge, i.e.
to find n such that the variance of the Profit and Loss is minimized. This
procedure is described in the Appendix.

@ Other approaches are described in the following pages.
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Measuring Interest Rate Risk |

@ The challenge in measuring AB comes from defining realistic interest rate
factors.

@ Indeed, the bond price change (and the price of any interest rate derivative)
is exposed to a large number of interest shocks and on their joint movements,
i.e. how do we take into account a joint movement in Y; and Y;7.

@ We can define reduced form risk measures assuming particular shifts in the
risk factors.
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Measuring Interest Rate Risk Il

@ The DVOL1 calculation is straightforward assuming that the interest rate
changes are

@ perfectly correlated (there is just one risk factor);

@ have same sensitivity to this factor, i.e. they move in a parallel way, i.e.
@ We proceed as follows

1 given an initial Y (t, t1),..., Y (t, tp), and

2 a shifted spot rate curve Y (t, t1) +dY1,..., Y (¢, tn) + dYn,

3 we can reprice the security and compute the price change:

AB = Z( 1+ Y(t t))t,-—t_ (1+Y(t,t,-;+dY,-)t"_t>'

where c; =c/m,i=1,..,n—1, andc,=c/m+ N

4 We can assume as first approximation a parallel change across all maturities
t;, i.e. a unique factor is moving all spot/forward/swapt rates

dY; = o x df,Vi.
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See Excel File: Fl_InterestRateRisk.xlsm
Sheet: Method 1 Parallel Spot Curve

Example (DVO1 via parallel shifts in the spot cu
| Term  Swap DF Spot Rates Shift Shifted Rates  Shifted DF CF PV CF PV CF (Shift) |
1

1 -0.296% 1.0030 -0.296% 0.01% -0.286% 1.0029 5 5.01 5.01

2 -0.184% 1.0037 -0.184% 0.01% -0.174% 1.0035 5 5.02 5.02

3 -0.095% 1.0029 -0.095% 0.01% -0.085% 1.0026 5 5.01 5.01

4 0.027% 0.9989 0.027% 0.01% 0.037% 0.9985 5 4.99 4.99

5 0.160% 0.9920 0.161% 0.01% 0.171% 0.9915 5 4.96 4.96

6 0.295% 0.9824 0.297% 0.01% 0.307% 0.9818 5 4.91 4.91

7 0.425% 0.9704 0.429% 0.01% 0.439% 0.9698 5 4.85 4.85

8 0.548% 0.9567 0.555% 0.01% 0.565% 0.9559 5 4.78 4.78

9 0.662% 0.9414 0.673% 0.01% 0.683% 0.9406 5 4.71 4.70

10 0.766% 0.9251 0.781% 0.01% 0.791% 0.9242 105 97.14 97.04
Bond Price 141.39 141.28 |

Table: Computing the Bond DVO01 via shift in the spot rates. 1. Given the current discount curve price the
bond (141.39). 2. Given the current discount curve, compute the spot curve (here the ann. compounded one),

shift it, recompute the discount curve and reprice the bond (141.28). 3. The bond DVO01 is 0.1181.
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Measuring Interest Rate Risk

@ Alternative assumptions are:
@ to assume a parallel shift in forward rates

dF(t, T;—1, T;) = 0 x df

and translate changes in forward rates into changes of the spot rates;
@ to assume a parallel shift in market quotes (e.g. swap rates)

dS(t, T;) = o x df

and translate these changes in changes of the spot rates;

© Yield based DVO01, where we assume that the interest rate factor is the yield
to maturity;

@ Assuming different shifts at different term structure pillars (this assumption is
supported by the observation that short-term rates are more volatile than
long-term rates):

dY(t, T;) = o; x df.

(@©Gianluca Fusai (2019-20) Interest Rate Risk SMM269 15 /77



See Excel File: Fl_InterestRateRisk.xlsm
Sheet: Method 2 Parallel Fwd Curve

Example (DVO1 via parallel shift in the forwa
Tenor  Swap DF Fwd Rates  Shift Shifted  DF Shift CF PV CF PV CF (Shift)
1 1

1 0.296%  1.0030 -0.296% 0.01%  -0.286% 1.0029 5 5.01 5.01

2 0.184%  1.0037 -0.072% 0.01%  -0.062% 1.0035 5 5.02 5.02

3 0.095%  1.0029 0.083% 001%  0.093% 1.0026 5 5.01 5.01

4 0.027% 0.9989 0.395% 001%  0.405% 0.9985 5 4.99 4.99

5 0.160% 0.9920 0.697% 001%  0.707% 0.9915 5 4.96 4.96

6 0.295% 0.9824 0.982% 001%  0.992% 0.9818 5 491 491

7 0.425% 0.9704 1.226% 001%  1.236% 0.9698 5 4.85 4.85

8 0.548% 0.9567 1.442% 001%  1.452% 0.9550 5 4.78 478

9 0.662% 0.9414 1.620% 001%  1.630% 0.9406 5 471 4.70

10 0.766% 0.9251 1.761% 0.01%  1.771% 0.9242 105 97.14 97.04

\ Bond Price  141.39 14128 |

Table: Computing the Bond DVO01 via shift in the forward rates. 1. Given the current discount curve price
the bond (141.39). 2. Given the current discount crurve, compute the forward curve, shift it, recompute the
discount curve and reprice the bond (141.28). 3. The bond DV01 is 0.1181=-(141.28-141.39).

Interest Rate Risk SMM269 16 /77
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Example (Hedging using DV01)

We hedge the exposure using a 10 year swap.

@ We set the fixed rate of the swap using the initial discount curve

~0.07489

= = 0.76609
9.77641 &

The initial value of the swap is 0.

Using the shifted curve, we reprice the swap.
The new value of the swap is 0.00096.

The DVO01 of the swap is -0.000957907.

The Hedge Ratio is —0.1181/ — 0.000957907 = 123.34, i.e. we need a
notional of 123 USD to hedge the bond exposure.

Hedging with 10 years swap |

Initial Curve Shifted Curve
AF 1 1

Annuity 9.77641 9.77113
Floating Leg 0.07489 0.07580
Swap Rate 0.00766 0.00776
FV 0.00000 0.00096
DVO1 -0.00096
Hedge Ratio 123.3388

4
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See Excel File: Fl_InterestRateRisk.xlsm

Sheet: Method 3 Parallel Swap Curve

Example (DVO1 via parallel shift in the swap curve)
Term Swap DF Shift Shifted Swap DF Shift CF PV CF PV CF (Shift)
1 1
1 -0.296% 1.0030 0.01% -0.286% 1.0029 5 5.01 5.01
2 -0.184% 1.0037 0.01% -0.174% 1.0035 5 5.02 5.02
3 -0.095% 1.0029 0.01% -0.085% 1.0026 5 5.01 5.01
4 0.027% 0.9989 0.01% 0.037% 0.9985 5 4.99 4.99
5 0.160% 0.9920 0.01% 0.170% 0.9915 5 4.96 4.96
6 0.295% 0.9824 0.01% 0.305% 0.9818 5 4.91 4.91
7 0.425% 0.9704 0.01% 0.435% 0.9698 5 4.85 4.85
8 0.548% 0.9567 0.01% 0.558% 0.9559 5 4.78 4.78
9 0.662% 0.9414 0.01% 0.672% 0.9405 5 4.71 4.70
10 0.766% 0.9251 0.01% 0.776% 0.9242 105 97.14 97.04
Bond Price 141.39 141.27

Table: Computing the Bond DVO01 via shift in the swap rates. 1. Given the current swap curve, bootstrap
discount factors and price the bond (141.39). 2. Given the current swap curve, shift it and recompute the
discount curve via bootstrap and reprice the bond (141.27). 3. The bond DVO1 is 0.1203=-(141.27-141.39).
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Example (DVO01 via shift in the yield to maturity)

Term  Swap DF CF PV CF YTM PV CF Shift Shifted YTM PV CF (Shift)
1
1 -0.296% 1.0030 5 5.01 0.70% 4.97 0.01% 0.71% 4.96
2 -0.184% 1.0037 5 5.02 0.700% 4.93 0.01% 0.71% 4.93
3 -0.095% 1.0029 5 5.01 0.700% 4.90 0.01% 0.71% 4.90
4 0.027% 0.9989 5 4.99 0.700% 4.86 0.01% 0.71% 4.86
5 0.160% 0.9920 5 4.96 0.700% 4.83 0.01% 0.71% 4.83
6 0.295% 0.9824 5 4.91 0.700% 4.80 0.01% 0.71% 4.79
7 0.425% 0.9704 5 4.85 0.700% 4.76 0.01% 0.71% 4.76
8 0.548% 0.9567 5 4.78 0.700% 4.73 0.01% 0.71% 4.72
9 0.662% 0.9414 5 4.71 0.700% 4.70 0.01% 0.71% 4.69
10 0.766% 0.9251 105 97.14 0.700% 97.93 0.01% 0.71% 97.83
| Bond Price 141.39 141.39 141.27 |

Table: Computing the Bond DVO01 via shift in the YTM. 1. Given the current swap curve, bootstrap discount
factors and price the bond (141.39). 2. Compute the bond YTM (0.70%), shift it to (0.71%) and reprice the
bond (141.27). 3. The bond DVO01 is 0.12=-(141.27-141.39). In this example, we can also compute the bond
duration (=8.45), the modified duration (8.39=8.45/(1+0.70%)), and then the DVO1 via the approximation
—8.39 x 141.39 x 0.01% = 0.12. For details see the Excel file Fl_InterestRateRisk.xls

Gianluca Fusai (201
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Change in the slope
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Figure: Change in the slope of the term structure
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Building non parallel shift: A slope Change

@ A slope change can be captured by a downward movement in the short term

and an upward movement in the long term (or viceversa)
dY(t, T;) = o; x df,

where 0; > 0 for some maturities and o; < 0 for other maturities.

Term Initial Shift New
T Y(t, T1) A1 >0(or<0) Y(t, T1)+ M

T; Y(t, Tl) A; =0 Y(t, T,')

T, Y(t,T,) A, <O0(or>0) Y(t, Tn)+A,

If we set
Ap— Dy _Tn'Alle'An

= == '
s A 8 T, — T
then we can model a change in slope by setting

A,’ZDC-FIB'(T,'—t)
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Example (Building a slope shift)

@ We use T; =1 as shortest maturity and T, = 10 as the longest one.

o We set A1 = 0.20% and A1g = —0.20% (20 b.p)
@ Then we have —0.044%, and
a = 10‘0'20%1617& ' = 0.244% so that the change in the spot rate for a

generic maturity is given by

A; = 0.244% — 0.044% - (T; — 0).

Tenor Swap DF Fwd Rates Slope Shift Shifted DF Shift CF PV CF PV CF (Shift)
1 1
1 -0.296% 1.0030 -0.296% 0.20% -0.096% 1.0010 5 5.01 5.00
2 -0.184% 1.0037 -0.072% 0.16% 0.083% 1.0001 5 5.02 5.00
3 -0.095% 1.0029 0.083% 0.11% 0.194% 0.9982 5 5.01 4.99
4 0.027% 0.9989 0.395% 0.07% 0.461% 0.9936 5 4.99 4.97
5 0.160% 0.9920 0.697% 0.02% 0.720% 0.9865 5 4.96 4.93
6 0.295% 0.9824 0.982% -0.02% 0.960% 0.9771 5 4.91 4.89
7 0.425% 0.9704 1.226% -0.07% 1.160% 0.9659 5] 4.85 4.83
8 0.548% 0.9567 1.442% -0.11% 1.331% 0.9532 5 4.78 4.77
9 0.662% 0.9414 1.620% -0.16% 1.464% 0.9395 5] 4.71 4.70
10 0.766% 0.9251 1.761% -0.20% 1.561% 0.9250 105 97.14 97.13
Bond Price 141.39 141.20

Table: Computing the Bond DVO01 via slope shift in the forward rates. 1. Given the current discount curve
price the bond (141.39). 2. Given the current discount curve, compute the forward curve, shift it via a slope
change, recompute the discount curve and reprice the bond (141.20). 3. The bond DVO01 is
0.19=-(141.20-141.39).
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Example (The original and shifted forward curve)
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Figure: Slope shift in the forward curve
v

(@©Gianluca Fusai (2019-20) Interest Rate Risk SMM269 23 /77



Example (The initial and shifted value of the bo

Bond Price
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Figure: Slope shift in the forward curve and bond value
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Change in the convexity
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Figure: Change in the curvature of the term structure
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Building non parallel shift: Convexity Change

@ A curvature shift can be captured by a shift function that is quadratic in the
time to maturity

Ai=a+B-(Ti—t)+9-(T;i—t)?
where, we select three maturities (T3 < Ty, < Tp), and we set
a+B-(Ty—t)+7- (T —t)2 = +4A,

and Znmwn | 2500 OGSt
A+B- (Tm—t)+9- (Tm—1)% = —A,berA righs -
__0//5; + 0. OOD?én V’ ‘o
01864, 0 0o, ‘-
(T - (1,07 204 i = 2)
= IRS+ oL
4B -0l Aﬂp — 01834 Apg %H
N \-(-O.HSH/IW 57 b+
Alﬂs = Ooooﬁéagk 4 000086}43!2 oy )42?34
|an|’u:a Fusa|01920) (- RF— I‘r’:terest Rate Risk AEF (_0I8&4 +ﬂ/){0033|;§ 4”56/?7

and
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Example (Building the curvature change

=5and T, =10, t = 0.

o We set T
o We set Aq

=1, T,
= 0.20%, As
e We find & = 0.4000%, B

= —0.20% and AlO = 0.20%.
= —0.2200%, v = 0.0200%.
@ The shift for a generic maturity is given by

Table: Computing the Bond DVO01 via slope shift in the forward rates. 1. Given the current discount curve
price the bond (141.39). 2. Given the current discount curve, compute the forward curve, shift it via a change

_ 0 0 0 2
A; = 0.4000% + (—0.2200 /o) - T; 4+ 0.0200% - T7.
Tenor Swap DF Fwd Rates Curvature Shift Shifted DF Shift CF PV CF PV CF (Shift)

1 1
1 -0.296% 1.0030 -0.296% 0.20% -0.096% 1.0010 5 5.01 5.00
2 -0.184% 1.0037 -0.072% 0.04% -0.032% 1.0013 5 5.02 5.01
3 -0.095% 1.0029 0.083% -0.08% 0.003% 1.0013 5 5.01 5.01
4 0.027% 0.9989 0.395% -0.16% 0.235% 0.9989 5 4.99 4.99
5 0.160% 0.9920 0.697% -0.20% 0.497% 0.9940 5 4.96 4.97
6 0.295% 0.9824 0.982% -0.20% 0.782% 0.9862 5 4.91 4.93
7 0.425% 0.9704 1.226% -0.16% 1.066% 0.9758 5 4.85 4.88
8 0.548% 0.9567 1.442% -0.08% 1.362% 0.9627 5 4.78 4.81
9 0.662% 0.9414 1.620% 0.04% 1.660% 0.9470 5 4.71 4.74
10 0.766% 0.9251 1.761% 0.20% 1.961% 0.9288 105 97.14 97.52

Bond Price 141.39 141.86

in the curvature, recompute the discount curve and reprice the bond (141.86). 3. The bond DVO1 is
-0.4714=-(141.86-141.39).
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Figure: Initial and shifted forward curve after a change in the curvature
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Bond Price
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Figure: Initial and shifted bond value after a change in the curvature of the forward curve
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Functional risk measures |

@ According to this approach we use a term structure model and we examine
the sensitivity of the different products to changes in the parameters

@ For example, if we adopt the Nelson-Siegel model, we can examine the

sensitivity to Bg (proxy of a change in the level), to B1 (proxy of a change in
the slope), (proxy of a change in the level)

@ In this model, the discount curve is assumed to be as follows
Pns (t,t4+T1;0) =exp(—T X Rys (t, t+T;60)) .

where the continuously compounded spot rate is defined according to

Rns (t, t+7;0) = Bo + <ﬁ1+ﬁk2> 1_$k(_ﬂfk)7'8—k2exp(—”rk),
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Functional risk measures |l

@ 3¢ specifies the long rate to which the spot rate tends asymptotically

@ f31 is the weight attached to the short term component (spread
short/long-term)

lim Rys(t, t+7;0) = Bo + B1.
7—0

@ f3o is the weight attached to the medium term component (a kind of
curvature measure).

@ k measures the point of the beginning of decay.

(@©Gianluca Fusai (2019-20) Interest Rate Risk SMM269
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Functional risk measures ll|

We proceed as follows

o

©00

© 0

Fit the Nelson-Siegel model and obtain estimated values of B¢, B1 and B2
and x.

Price the portfolio using the fitted curve and obtain 7t(Bo, B1, B2, k)
Apply a level shift to the curve by changing Bo — Bo + ABo
Reprice the portfolio and estimate the DVO1 with respect to a level shift

DV01P0 = —(7t(Bo + APo. B1. B2. k) — 7(Bo. B1. B2, k)

Apply a slope shift to the curve by changing 1 — B1 + AB1
Reprice the portfolio and estimate the DV01 with respect to a slope shift

DV01F1 = —(7t(Bo, B1 + AB1, B2, k) — (Bo, B1, B2, K))

Apply a curvature shift to the curve by changing o — B2 + AB2
Reprice the portfolio and estimate the DVO1 with respect to a curvature shift

DV01P2 = —(7t(Bo, B1, B2 + AP2. k) — 7(Bo. B1, B2, k)
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See Excel File: Fl_InterestRateRisk.xlsm

Sheet: Functional Hedging NS

d PDIE > O g 0le[S
Tenor Swap DF Rates Spot NS DF NS New Rates New DF CF PV CF PV CF (Shift)
1 1
1 -0.296% 1.0030 -0.296% -0.309% 1.0031 -0.299% 1.0030 5 5.02 5.01
2 -0.184% 1.0037 -0.184% 1.0039 -0.182% 1.0036 5] 5.02 5.02
3 -0.095% 1.0029 -0.095% I 1.0022 -0.064% 1.0019 5 5.01 5.01
4 0.027% 0.9989 0.027% 0.046% 0.9982 0.056% 0.9978 5 4.99 4.99
5 0.160% 0.9920 0.161% 0.167% 0.9917 0.177% 0.9912 5 4.96 4.96
6 0.295% 0.9824 0.297% 0.290% 0.9828 0.300% 0.9822 5 4.91 4.91
7 0.425% 0.9704 0.429% 0.414% 0.9714 0.424% 0.9707 5 4.86 4.85
8 0.548% 0.9567 0.555% 0.541% 0.9577 0.551% 0.9569 5 4.79 4.78
9 0.662% 0.9414 0.673% 0.669% 0.9416 0.679% 0.9407 5 4.71 4.70
10 0.766% 0.9251 0.781% 0.798% 0.9233 0.808% 0.9223 105 96.94 96.85
SSE 0.000% Bond Price 141.20 141.09
Initial Shift New

Bo -0.8853% 0.01% -0.8753%

B1 0.4618%  0.00%  0.4618%

B2 0.2234%  0.00%  0.2234%

k  -1.0360% 0.00% -1.0360%

| 7(¢) 141.20 141.09
v
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Tenor Swap DF Rates Spot NS DF NS New Rates New DF @F PV CF PV CF (Shift)
1 1
1 -0.296% 1.0030 -0.296% -0.309% 1.0031 -0.299% 1.0030 5 5.02 5.01
2 -0.184% 1.0037 -0.184% -0.192% 1.0039 -0.182% 1.0036 5 5.02 5.02
8] -0.095% 1.0029 -0.095% -0.074% 1.0022 -0.064% 1.0019 5 5.01 5.01
4 0.027% 0.9989 0.027% 0.046% 0.9982 0.056% 0.9978 5 4.99 4.99
5 0.160% 0.9920 0.161% 0.167% 0.9917 0.177% 0.9912 5 4.96 4.96
6 0.295% 0.9824 0.297% 0.290% 0.9828 0.300% 0.9822 5 4.91 4.91
7 0.425% 0.9704 0.429% 0.414% 0.9714 0.425% 0.9707 5 4.86 4.85
8 0.548% 0.9567 0.555% 0.541% 0.9577 0.551% 0.9569 5 4.79 4.78
9 0.662% 0.9414 0.673% 0.669% 0.9416 0.679% 0.9407 5 471 4.70
10 0.766% 0.9251 0.781% 0.798% 0.9233 0.809% 0.9223 105 96.94 96.84
SSE 0.000% Bond Price 141.20 141.08
Initial Shift New

Bo -0.8853%  0.00% -0.8853%
B1 0.4618%  0.01%  0.4718%
B2 0.2234%  0.00%  0.2234%
K -1.0360% 0.00% -1.0360%

| 7(t) 141.20 141.08
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[
3 D|e 3 o o elso aoe ode
O
Tenor Swap DF Rates Spot NS DF NS New Rates New DF @F PV CF PV CF (Shift)
1 1
1 -0.296% 1.0030 -0.296% -0.309% 1.0031 -0.304% 1.0030 5 5.02 5.02
2 -0.184% 1.0037 -0.184% -0.192% 1.0039 -0.182% 1.0036 5 5.02 5.02
3 -0.095% 1.0029 -0.095% -0.074% 1.0022 -0.059% 1.0018 5 5.01 5.01
4 0.027% 0.9989 0.027% 0.046% 0.9982 0.066% 0.9974 5 4.99 4.99
5 0.160% 0.9920 0.161% 0.167% 0.9917 0.193% 0.9904 5 4.96 4.95
6 0.295% 0.9824 0.297% 0.290% 0.9828 0.321% 0.9809 5 4.91 4.90
7 0.425% 0.9704 0.429% 0.414% 0.9714 0.451% 0.9689 5 4.86 4.84
8 0.548% 0.9567 0.555% 0.541% 0.9577 0.583% 0.9544 5 4.79 4.77
9 0.662% 0.9414 0.673% 0.669% 0.9416 0.717% 0.9375 5 471 4.69
10 0.766% 0.9251 0.781% 0.798% 0.9233 0.852% 0.9183 105 96.94 96.42
SSE 0.000% Bond Price 141.20 140.61
Initial Shift New

Bo -0.8853%  0.00% -0.8853%

B1 0.4618%  0.00%  0.4618%

B2 0.2234%  0.01%  0.2334%

K -1.0360% 0.00% -1.0360%

| m(t)  141.20 140.61 |
y
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Functional Hedging in the Nelson-Siegel Model |

Example (Step 1: Pricing)

Bond IRS1 IRS2 Portfolio Quantities

Bo 0.110 0.020 0.096 0.11 Bond 1.000
B1 0.120 0.020 0.102 0.12 IRS1 0.000
B> 0.590 0.020 0.509 0.59 IRS2 0.000

Table: Exposures (measured via DVO01) of the unhedged portfolio. IRS1: fixed rate swap with 2 years tenor;
IRS2: fixed rate swap with 10 years tenor

(@©Gianluca Fusai (2019-20)
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Functional Hedging in the Nelson-Siegel Model Il

Example (Step 2: Hedging level risk)

Bond IRS1 IRS2 Portfolio Quantities
Bo 0.110 0.020 0.096 0 Bond 1.000
B1 0.120 0.020 0.102 0.01 IRS1 -5.500
B> 0590 0.020 0.509 0.48 IRS2 0.000

Table: Hedging Level Risk. IRS1: fixed rate swap with 2 years tenor; IRS2: fixed rate swap with 10 years tenor

Choose quantities such that

0.1104-0.020-n; =0

This gives
np=-55 np=0
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Functional Hedging in the Nelson-Siegel Model Il

Example (Step 3: Hedging slope risk)

Bond IRS1 IRS2 Portfolio Quantities

Bo 0.110 0.020 0.096 -0.0029 Bond 1.000
B1 0.120 0.020 0.102 0.0000 IRS1 0.000
B> 0590 0.020 0.509 -0.0088 IRS2 -1.176

Table: Hedging Slope Risk. IRS1: fixed rate swap with 2 years tenor; IRS2: fixed rate swap with 10 years tenor

Choose quantities such that

0.120 4 0.102-np = 0

This gives

np = 0, np = —1.176
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Functional Hedging in the Nelson-Siegel Model 1V

Example (Step 4: Hedging Level & Slope risk)

Bond IRS1 IRS2 Portfolio Quantities
Bo 0.110 0.020 0.096 0.0000 Bond 1.000
B1 0.120 0.020 0.102 0.0000 IRS1 2.500
B2 0590 0.020 0.509 -0.2083  IRS2 -1.667

Table: Hedging Level & Slope Risk. IRS1: fixed rate swap with 2 years tenor; IRS2: fixed rate swap with 10
years tenor

Choose a number ny and nyp of the two swaps such that

0.110 +0.02 - ny +0.096 - np = 0

and
0.120+0.02-n1 +0.102-np, =0

This gives

np =25, np=—1667
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Extending Functional Hedging

@ The approach used with the Nelson-Siegel model can be extended to other
models.

@ For example, if we adopt the Vasicek model we can consider hedging against
changes

in the short rate r(t)

in the long-run mean p(t)

in the volatility parameter o

in the mean-reversion speed «

@ Similar considerations can be done for other models
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Convenient Risk Factors

Often, it's natural to define an appropriate risk factor for each contract.
Example 1. Forward Rate Agreement.

Example 2. Interest Rate Swap.

Example 3. Floating Rate Note.

Example 4. Caplet.

Example 5. Swaption.
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Example (DVO01 of a Forward Rate Agreement)

@ A FRA contract with reset in T; and payment in Ty, and fixed rate F has a
fair value equal to

FRA(t) = P(t, T2) (F(t, Ty, T2) — F) ary 75,

@ According to this formula, a FRA can take positive or negative values
depending on the change in the forward rate.

o We take it as risk factor, so that

IFRA(t)

RN (e, T
aF(t, le TQ) (t' 2) X aTl,TQ’

@ Therefore )

1
B/OlFRA =—P(t, T2) X a1, X 10,000
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Example (DVO1 of a Floating Rate Note)

@ A FRN with current coupon ¢ and next coupon date in T7 is worth

FRN(t) = P(t, T1) x (1+ ¢ x a1, 7,).

@ The FRN price moves, due to changes in P(t, T1). These changes are driven
by the T; spot rate, a LIBOR rate in general, that it is our risk factor so we

write 14
CXNXT, T
FRN(t) = DL
( ) 1+ L(t, Tl)"‘t,Tl
and we have
aFRN(l’) 1+C><0{T0’T1

aL(t, Ty) P (e T )

@ Therefore

1

2
DVOlpgy = ¢,y X PE(t, T1) X (14 ¢ X ag,1y) X 10,000

il

\
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Example (DVO01 of an Interest Rate Swap)

@ An IRS having: a) reset dates in Tg, T1,- -, Tp—1 with Tg > t, b) payment
dates in Ty, Ty, -+, Tp_1, c) fixed swap rate S, has a fair value equal to

Swap(t) = (S(t, To, Tn) — S) X Annuity(t, Tg, Tp),

where

s

Annuity(t, To, Tp) = Y P(t, Ti) xat, | T,

1

]

@ According to this formula, a swap can take positive or negative values
depending on the change in the forward swap rate.

o We take it as risk factor, so that

el
dSwap(t) .
\ 35(z, To, 1) ety (&, To. Tn)

DVo01 = —Annui To, Th
M nnuity (t, Tg, Tp) X 10,000

@ A modified formula is needed if the payment in Tj is already known (i.e.
To < t < Ty), so Annuity(t, To, Tn) = 75 P(t, Tj) X at, | T:.

and then
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Example (DVO01 of a Caplet in the Black model)

@ A Caplet contract with reset in T; and payment in T, and strike K is priced
according to to

Caplet(t) = P(t, Tp) x (F(t, T, T2)N(d1) — KN(d2)) X a1y, 7,

@ According to this formula, a caplet is exposed to changes in the forward rate.
o We take it as risk factor, so that

dCaplet(t)
\w = P(t, TZ) X N(d]_) X DC:\

1
X
10, 000

@ Therefore

f DVO]-Caplet = —P(l’, T2) X N(dl) X1, T

i.e. the DVO01 of a FRA contract multiplied by the caplet delta.

@ This formula assumes that the Black formula is used. If we adopt a different
pricing model, e.g. Bachelier, the DVO1 will also change.
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A Case Study

© Consider portfolio constituents

@ Measure interest rate risk of each componet

© Compute portfolio exposure according to a given risk factor
@ Adjust portfolio composition to hedge againt the risk factor
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Measuring the Price Sensitivity of Portfolios

@ We describe how measures of portfolio price sensitivity are related to the
measures of its component securities.

@ We have i = 1,..., n interest rated derivatives (e.g. coupond bonds) with
prices B;, and risk exposures DV01; and we have an amount a; invested in
each.

@ By definition, the value of a portfolio equals the sum of the values of the
individual securities in the portfolio

T = i a;B,-.
i=1

@ We can compute the DV01 of the portfolio DV01, as sum of the individual
DVO01 values (this is possible because the DV01's are money amounts)

n
DV0l, =) a;DVO01;.
i=1
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Hedging a portfolio of bonds using DVO01

1. Hedging a portfolio

@ We are hedged against interest rate risk if we choose the amounts a; such
that

DVO01 constraint

n
Y ai x DV01; =0,
i=1
and

Balance constraint

n
Za,- X Bj = 7.
i=1
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2. Setting up a linear system

@ This amounts to solve the 2 X n linear system with respect to the n
unknowns ag, ..., an:

a1
DVOl; DVOl, .. DVOl, ]| 2 | [ o
By B, Bn . Tl
an

@ In general, the linear system admits an infinite number of solutions.
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Example (1. Computing Portfolio Exposure)

The calculations details can be found in the Excel file BasicYields.xlsm,
Sheet: Hedging a Portfolio

@ Let us suppose we have the following portfolio

Bond Gross Price  Yield % FV Units Value DVO01 x 10, 00

1 99.9 2.35 100 11 1098.9 2.44

2 101.2 2.45 100 -12 -1214.4 3.19

3 103.32 2.8 100 7 723.24 4.34
Portfolio 607.74 18.95

@ In particular, we have

DVO01,; x 10000 = 11 x 2.44 — 12 x 3.19 7 x 4.34 = 18.95.
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Example ((...ctd) 2. Changes in the term structure and change in the

portfolio value)
Let us assume that changes in the YTM are perfectly correlated and same
volatility. Therefore,
@ if YTMs move up by 100 basis points, the change in the portfolio value is
estimated as

A = —18.95 x 1% = —1.895,

so the new value of the portfolio is
607.74 — 1.895 = 605.845.

@ Similarly, if the term structure moves down by 100 basis points, the new
portfolio value is

607.74 + 1.895 = 609.635.
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Example ((...ctd) 3. Immunize the portfolio: solve a linear system)

@ We would like to change the portfolio composition so that we are immunized

(hedged) against term structure movements.

@ We have to find the quantities a; to be invested in each bond. We have to
solve the following linear system

244 319 434 AL T o0
99.9 101. 103.32 2 | = | 607.74

@ The Linear System has 3 unknowns and 2 equations: there is an infinite
number of solutions.

o We decide (arbitrarily) to keep unchanged the quantity of the second bond
(32 = —12).
@ Setting ap = —12, the linear system becomes

244 434 a ] 12 x 3.19 _ [ 3828
99.9 10332 | | a3 | | 607.74+12x 101 | | 1819.74
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Example ((...ctd) 4. The new portfolio composition)

@ We solve the linear system and we get

al = 21.78, ay = —12, a3z — —3.42.

@ The new portfolio compostion is

Mkt Gross Price  Yield % Nominal  Quantity Value DVO01

BTP 1 99.9 2.35 100 21.78 2175.63 2.44
BTP 2 101.2 2.45 100 -12.00 -1214.4 3.19
BTP 3 103.32 2.8 100 -3.42 -353.49 4.34
607.74 0.00

@ Notice that

e The portfolio value is unchanged, due to the balance constraint;

e The portfolio exposure to term structure shifts is now 0.

o Whatever the term structure shift (provided it is not too large and of parallel

type), the portfolio value will not be affected.
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Question ,
@Ql: qq @J:'|©O
DVD\I - -0 DVO\L =-08

You hold 10 and 20 units of two bonds. Their market prices are 99 and 100. Their
DVO01s are -0.2 and -0.8.
@ Compute the portfolio DVO01; DVOl "= Ry (-0.2) + }ox(—o.g): -
@ How much do you lose or gain if there is an up movement of 20 bp in the
market rates; 4Y-= Zolgfs AT - DVD)WX Ay = —If x20= 24o
@ You are considering to buy a zero-cost derivative (eg a swap), having DV01
equal to 0.6. How many swaps do you need to hedge the exposure of your

portfolio?
Cwh
DVo| Fe 0. b

SwAP
AT[: (ij'rr + I/\XDVO ) 49

-1¥ obn=o0
+ e
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Answer
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Conclusions

DVO01 is a simple risk analytics easy to comunicate and to compute (in
general).

Term structure does not move in a parallel way.

Different points of the term structure have different volatility.

There is a large correlation among changes in the risk-factors.

We have seen how to manage different kind of interest rate changes
Another procedure is via Principal Component Analysis

Principal Component Analysis is a statistical procedure that allows to take
into account non perfect correlation in the term structure changes via a
factor model.
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Appendix
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Duration

@ Duration hedging of a portfolio is based on a single risk variable, the yield to
maturity of the portfolio.

Macaulay duration

The Macaulay bond duration is measured as the weighted maturity of each
payment, where the weights are proportional to the present value of the cash
flows, if these are predetermined

n
(ti—t)xc/m | (tn,—t)x100
D g 1+y“* T
i c/m 100 '
o )T (Ly)™ Tt
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Textbook Example: Duration of a BTP

B [ ¢ ] D E

3 Example 1: BTP

F
| & |¥ieldto maturity 0.028581 586
| B |Coupon Gannual 0.03
| 7 |Frequency 2
| 8 |Time since last coupon 0.27
| 9 |Fraction of coupon period 054
| 10 |Accrued Interest 2
| 11 |<lean Price 100,69
| 12 |Gross Price 101.23

13| FPayment Dates (years)  Coupons Py by
| 14 ] 0.23 1.5 0.3428 =GB 40 +5DE5 B14
| 15| 0.73 1.5 1.0727 =C15* 81581 +5D55)"B15
| 16 | 1.23 1.5 1.7821 =C16* B 161 +§D 55" B16
| 17 ] 1.73 1.5 247145 =C17 1T +5DE5 817
| 18] 2.23 1.5 31413 =18 B8 0 +5DEa B18
R 273 101.4 2586.5765  |=C19B1%1 +5055"B19

20 Duration (vears) 2.6216 =SOMMA D14 D190 2
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Textbook Example: Duration of a Treasury Bond

B [ ¢ 1 D | E

24 Example 2: Treasury Bond

25
| 26 [ ield to maturity 0.028380223
| 27 |Coupon (annuah ooz
| 28 |Frequency 2
| 29 |Time since last coupon 0.27
| 30 |Fraction of coupon period 0.54
| 31 JAccrued Interest 2
| 32 |Clean Price 100.69
| 33 |Gross Price 101.23

Fayment Dates

| 34 ] {semesters) Coupons P ty
| 35 | 0.46 1:5 0.6855 =C35*B3SN +§DE26/2) B35
| 36 | 1.46 1.5 21454 =C3E*B36M +§DE26/2) B36
| 37| 246 125 35643 =CAT*BITM +$DE 26/ B3T
| 28 | 346 125 4.9430 =C38*B38M +§DE26/2)"B38
| 39| 4 46 ] B.2825 =C39*B391 +$DE26/2)B39
| 40| 5.46 101.5 513.1530  |=C40*B40I1 +5DF 26/ 2840
| 41 Duration (semesters) 5.2432 =SOMMA (D35 DANDI3

42 Duration (vears) 2.6216 =014152
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Computing the Duration in Excel

A | B | T | | E [ F | G | H

i Duration of a BTP

2 BTFO1.02.2006 I
= E O ITODD34Z4485
[ 1 Maturity 2112008

5 [Trade Date 10/28/2003
E ‘alue Date 103172003 Cell BS has been named ValueDate
| 7 JPayment of tast coupon &1/2003 =Coupped(ValueDate B4, 2)

8 |Date of next coupon 2172004 =Coupncd|VakieDate B4,2 1)
[T JAnnual coupon 275 =SE(B20=1 A20+1 SE(B20=T A2042 A20))
| 10 |Days since last coupon il =B5-B7 1-ValueDate

11 |Days to next coupon 184 =BE-B7
[12|Clean Price 99.76000
| 13 JAcerued Interest 068003 =B BI0B11)
L Market Gross Price 100.44003 =B12+B13
| 15 [Yiekd to Maturity 28738% =5B592
[ 16] Week Day
[17]  Coupon Dates 1 (sunday) to 7 {saturday), Comected days T PWL) 4PV

18 Coupon D
19 ] 2112004 1 2R120% o / X375 1.36500 0351535209 =D19°'F19365
20 B1/2004 1 B212004 278 1.375 1.34586  1.0176B7887 =D20°F20/365
Z 21112005 3 21172005 459 1.375 1.32687 186858776 =021°F21/365
22 ] 8112005 2 8112005 640 1375 130836 2204111938 =D22'Fe2ies
23 ] 21112008 4 21172006 524 1.375 1.28881 291178277 =02F'F23/365
24 2112008 4 21112006 f24 100 9380412 211.7660156 =D24'F24/365)
25 Sum 10044 22001
E =G25F75 Diraten " 2.19046
Hl =F 25/ 1+B15) Modified Durafiog 2.12827

28
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Duration as sensitivity measure

Duration and interest rate exposure

Duration is a measure of interest-rate exposure to parallel shifts in the yield to

maturity

aB(y;t,tL---,tn):f D B = —Dy x B.
Ay (1+y)

where Dy = (:lTDy) is modified duration. The term Dy, B is known as dollar

duration.

vy

@ The discrete variation in the bond price given a discrete variation in the yield
can be approximated as

absolute P&L: AB =~ —Dpy X B X Ay,

AB
lative P&L: —
relative 5

12

_DM X Ay.
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Duration: a linear approximation to the price function

@ Using a one-order Taylor expansion:
B(y"+Ay) = B(y") —Dux B(y*) x (y —y"),
——  —
intercept slope

where y* is the yield to maturity.
@ The approximation works well only for small parallel shifts in the term
structure.

Price

.,
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Example (Estimating bond price changes)
Let us suppose that

D 219046
1+y 140.028733

B =100.44,y = 2.8733%, D = 2.19046, Dy, = = 2.12927.

If we consider a 10 basis point change in the yield to maturity (1bp is 1% of 0.01
or 0.0001), i.e. dy = 10bp = 10 x 0.0001, then

absolute P&L: AB >~ —Dy; x B X Ay = —2.12927 x 100.44 x 0.001 = —0.21386,
B
relative P&L: % ~ —Dp X Ay = 2.12927 x 0.001 = 0.00212927

This means that an increase in the ytm of 10bp implies an
@ a decrease in the bond price of 0.21386 Euros;

@ the new bond price will be
B* = B+ AB = 100.44 — 0.21386 = 100.2261634;

© a percentage variation in the bond price of 0.00212927;
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Babcock's formula: Duration as immunization length

Duration gives the neutral investment horizon

Babcock’s formula

The Babcock's formula gives a simple (approximate) expression for the holding
period return in terms of w the holding period, y the YTM, Dg the Duration at
the beginning of the investment period and Ay the change in the YTM:

DO*CU

Yo =Y — Ay.

@ The holding period return (return ex-post) is equal to the YTM (return
ex-ante) if

@ there are no variations in the YTM, i.e. Ay =0, or if
@ the holding period is equal to the Duration.

@ The risk of having an ex-post return different from y is larger, greater the
difference between Dy — w (excess Duration).
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Hedging a portfolio of bonds using Duration

@ Let us assume that the term structure of ytm is flat and that it is subject to
a parallel shift, i.e. approximately

Ayr >~ Ayy ~ ... >~ Ay, >~ Ay.
@ Then, using the fact that DV01; = Dy, x B;/10000, we have

B;
10000°

n

DVOl; =Y aj x Dy, X
i=1

o If we express the DVO1 of the portfolio in terms of the individual durations,

we get
DT[XBT( —ia-xD-x#
(1+yz) x 10000 ="~ 7" 7 (14 y;) x 10000
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Portfolio duration as sensitivity measure

o Simplifying, and assuming that y; = ... = y, = yy, we obtain a
convenient property.

Portfolio Duration

Under the assumption that the term structure of yields is flat, the duration of a
portfolio is the weighted average of each bond'’s duration

n
Dr = Z w;Dj,
i=1

where
a; X B,' aj X B,'

w; = = n o
Br j=1 Bj
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Hedging a portfolio of bonds

@ The portfolio value is then subject to a change given by
n n
At = Z a,-AB,- = — Z a; X DM,i X B,' Ay.
i=1 i=1

@ We are hedged against interest rate risk if we rebalance the amounts a; such
that

duration constraint

n
):a,-x DM';X B; =0,
i=1

and

balance constraint

n
Za,- X B,' = TT.
i=1

@ At the end, we still have to solve a linear system (see the Excel file).
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The multi-factor approach |

@ We can compute the DVO1 of each bond with respect to each point of the
term structure, say K different points.

@ Therefore, at the first order we can write
K
AB; =) DVO01;Af;
j=1
@ The portfolio change is described by
N

N K
AP&L =Y qiAB;i =) q; )_ DVOL;;Af;.
i=1 i=1  j=1
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The multi-factor approach Il

@ We can rewrite the above as follows
K
AP&L = Z BiAf;,
j=1

where

N
ﬁj = Z q,'DVO].,',j.
i=1

@ We can interpret those coefficients as

B = Portfolio Exposure to factor j,j =1, ..., K
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The multi-factor approach Il

@ A possibility to manage this exposure is to choose the quantities such that
the profit and loss variance is minimized:

min var(AP&L)
q

always under a budget constraints, i.e. the portfolio value does not change
before and after the change in the allocation.

@ In this case, we try to exploit in an efficient way the large correlation among

risk factors.
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Example (Building a Minimum variance hedge)

@ Let us suppose that we would like to hedge the exposure of a portfolio of
bonds by using a number n of a zero-cost interest rate swap, so that

Tlhedged = TTunhedged + N X 0.
@ The exposure of the hedged portfolio is
ATthedged = —DVO1,Af, — nDVO01sywapAfswap
o If Af, = Afsyap, we can perfectly hedge the portfolio by setting

~Dvol,
DVO0lguap’

n=

o If the two risk-factors do not move in a 1-1 relationship, we can try a
minimum variance hedge.
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A Case Study |

1 Let us consider the following bonds having the exposures to different interest

rates as in Table.

Table: Portfolio Characteristics: for example the yellow cells give the exposures of the fourth bond to
changes in the 1 year spot rate

Bond | Mkt Price 1 2 3 4 5 | Weights
1 100 952 368 352 258 571 0.23
2 100 442 026 033 24 741 0.06
3 100 431 577 244 427 1093 0.09
4 100 925 374 4.03 479 1.82 0.21
5 100 142 318 244 6.57 541 0.02
6 100 1.3 415 382 299 7.74 0.17
7 100 743 319 156 1.04 421 0
8 100 424 566 4.03 352 4.09 0.22
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A Case Study Il

2 The portfolio exposures to the different interest rates are

Table: Portfolio Exposures: multiply the matrix of the exsposures with the weights vector, eg.
5.9674 = 9.52 X 0.23 +3.68 x 0.06 + - - - + 5.71 x 0.22

1 2 3 4 5
P&L 59674 4.181 3.4801 3.5417 4.6376

3 We have an amount of 100 USD to allocate among the different bonds.

4 The covariance matrix of changes in spot rates is as follows

Table: Covariance matrix of changes in spot rates

1 2 3 4 5

0.001594 0.001826 0.001902 0.001835 0.001755
0.001826 0.002326 0.002507 0.002464 0.002398
0.001902 0.002507 0.002779 0.002783 0.002751
0.001835 0.002464 0.002783 0.002848 0.002864
0.001755 0.002398 0.002751 0.002864 0.002924
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A Case Study Il

5 We can compute the portfolio variance

var(P&L) EZﬁfﬁﬂw

6 Given the current allocation, the variance of the P&L is 1.065.

7 We solve the minimization problem, also imposing constraints on the
maximum and minimum weights (20% and 5%).

8 We can set up the optimization problem in Excel.
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A Case Study IV
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A Case Study V

9 The optimizer suggests the optimal allocation

Table: The minimum variance allocation

Bond 1 2 3 4 5 6 7 8
Original 0.23 0.06 0.09 021 002 017 0 0.22
New 0.05 0.2 02 005 02 005 02 0.05
10 The new portfolio exposures are
Table: Comparing new and old portfolio
Factor 1 2 3 4 5

Original 5967 4.181 3.480 3.542 4.638

New 4.7315 3.3415 2.124 3.55

4.76
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A Case Study VI

11 We can examine the out-of sample performance of the two portfolios. We
achieve a 23% volatility reduction.
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Table: Old and new portfolio

Original

New

Volatility 0.175
Min return -1.692

Mean return  -0.031
Max return 2.700

0.134
-1.483
-0.026
2.327
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Required Readings

e Any derivatives textbook covering strategies in options.

e J. Hull, Options, Futures, and Other Derivatives, Pearson; 10th
edition (January 30, 2017), Chapter 11. Trading strategies
involving options

Exercises

e Question_Solutions_ QM_FI.pdf, Chapter X - Coupon Decomposition
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Financial Engineering: Coupon Replication
Verify the Coupon Replication

Another example with digital payoffs

Questions



Basic Payoffs



Basic Payoffs: formula

General Coupon Formula (Reset in Advance, Pay in Arrears)

C(T,') = f(RefRate(T,-,l)) X&r,_;, T X N.

Popular Coupon Formula

Fixed Coupon Floating
CXar_, T L(Ti1, Tj) xar_, T,
Caplet Floorlet
max(L(T,-,l, T,') — K, 0) X&T,_1,T; max(K — L(T,',l, T,‘),O) X AT, T;
Asset or Nothing Cash or Nothing
L(Ti1, Ti) X 17, T)>k X AT,y T; (1, T)sKk X AT, T;

Table 1: The reference rate is observed at the beginning of the coupon period (Reset
in Advance), but the payment occurs at the end of the period (Pay in Arrears). In the
Table the Face Value is assumed to be 1.
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Financial Engineering: Coupon
Replication



e How to use the basic payoffs to build up the coupon of the
structured product?

e In general, the basic payoffs can be priced via closed form pricing
formulas. This will be the topic of the next lectures.
e Then if we can decompose the coupon payment into basic payoffs

(i.e. static replica), then it is easy to price the bond.

e If this is not possible, we need to develop ad hoc pricing formula for
the bond.



Coupon Formula i

e Let us consider the payoff in Formula (1)

3% if L(T;_1, T;) <3%
C(T) =14 L(Ti1,T;) if 3%<L(Ti 1, T;) <5% (1)
5% if 5% < L(Ti_1, T;)

e The coupon profile is given in figure 1.



Coupon Formula ii

Coupon Rate %

| |
o 1 2 3 4 5 6 7 8
Libor Rate %

Figure 1: Payoff profile of coupon formula 1

e We want decompose it using basic payoffs.
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e We can also identify a caplet, struck at 3%.

I 1=3%+ (E—3%)* +

T S R N R
01 2 3 4 5 6 7 8
Libor Rate %

Coupon Rate %

O - N w & O o N ©
— T T

e The last component is a short caplet at 5%.

e Therefore

Coupon Rate %

0123 456 7 8
12m Libor Rate %

C(T)) =3%+(E—3%)" —(E-5%)".
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Verify the Coupon Replication




Verification Coupon Formula 1

e We can check that our decomposition is correct, considering the four
components in two cases: Libor below 3%, between 3% and 5%,
above 5%.

e This is done in the following Table

Component E<3% 3%<E<5% E>5%
Fixed 3% 3% 3%
Long Caplet at K = 3% 0 E—3% E—3%
Short Caplet at K = 5% 0 0 5—E%
Sum 3% (5 5%

Table 3: Verification of the payoff decomposition. First column: different option
components. Second to fourt columns: payoffs depending on the value of the
Libor rate.

11



Another example with digital
payoffs




Coupon Replication (Decomposition 1)

e Let us consider the payoff in Formula (2)

L(T;—1, T;)+50bp if UR(T;i—1,T;) <5%
(T = (2)
3.50% otherwise
e We want decompose it using basic payoffs.

e We can start by identifying a fixed amount equal to 0.5%

Coupon Rate %

o m M w & oo N
— T
Coupon Rate %

o kM w & oo N @
— T

— | =05%+

S S R R R T S R R
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8
12m Libor Rate % 12m Libor Rate %
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Coupon Replication (Decomposition 2)

e We can continue by identifying a floating amount

b— T —T—T T b— T T
51 5F
41 4l
R
= 3F = 3r
g of : 3 o
e L B € L
c I 0 c
3 of =05%+E+ &,
S 1L i S il
N ol
3 3k
I I R
01 2 3 456 7 8 012 3 456 7 8

12m Libor Rate % 12m Libor Rate %
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Coupon Replication (Decomposition 3) i

e We can continue by identifying a short asset-or-nothing with strike

at 5%
8 5 e
7k 4
3 U
<9 o 2
0%57 eg 1t
o | —05% 4+ E—Exlpery 1.
53 | T T E>5%  §-1f
k |
2k 1 Sl
1f a4l
=1 2 3 4 5 6 7 8 S0 T 2 3 4 5 6 7 8

01 23 456 7 8

12m Libor Rate % 12m Libor Rate %
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Coupon Replication (Decomposition 3) ii

e We complete the decomposition by identifying a number 3% of cash
or nothing options.

e Therefore

coupon = 0.5% + E — E X 1g50, + 3% X 1g~50.

15



Verification Coupon Formula 2

e We can check that our decomposition is correct, considering the four
components in two cases: Libor above or below 5%.

e This is done in the following Table

Component E<5% E>5%
Fixed 0.5% 0.5%
Floating E E
Short AON K = 5% 0 —E
Long 0.03 CON K = 5% 0 3%
Sum E+05% 35%

Table 4: Verification of the payoff decomposition. First column: different option
components. Second and third columns: payoffs depending on the value of the
LIBOR rate.
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Questions




e Consider the following coupon formula
CPN RATE = LIBOR + 10 BP; MAX CPN 6.25%.
e Plot the payoff function

e Determine a possible decomposition of the above coupon formula.

17



Answer .
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Answer ||

Another possible decomposition is given below

Covpen el

c = min(L+0.1%,6.25%) it
min (L 4+ 0.1% — 6.25%,0) + 6.25% .,
—max (6.25% — (L +0.1%),0) + ¢
—max (6.15% — L, 0) 4+ 6.25%
= @/3 —max (6.15% — L, 0).

(fixed rate) (short floorlet)

il

1
B

LR

Figure 2: Coupon Payoff
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Answer: Verification
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Home Questions

Consider the following coupon formulas

e CPN RATE = LIBOR + 10 BP; MAX CPN 6.25%.

e CPN RATE = 14.5% - LIBOR; MAX CPN 6%, MIN CPN = 4%.
e CPN RATE = 16.22%-2 LIBOR if positive; otherwise, 2%.

e CPN RATE = 0.85 LIBOR; MIN CPN 4%.

Assume the Libor is always positive.

21
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Main References:

Useful Readings

@ Brigo Damiano and Fabio Mercurio, Interest Rate Models: Theory and
Practice, Springer Finance 2001.

@ Pietro Veronesi. Fixed Income Securities. Chapter 20.

@ Bruce Tuckman, Angel Serrat. Fixed Income Securities: Tools for Today's
Markets, 3rd Edition Chapter 18.

@ Interest rate derivatives in the negative-rate environment Pricing with a shift,
Deloitte, Feb 2016.

@ Options valuation strained by quantitative easing, Sungard.
Excel Files

@ Fl_InterestRateOptions.xlsm

o Fl_BlackModel&co.xlsm
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Outline

@ Caps & Floors

e Black Model for caplets & floorlets, caps & floors
@ Pricing caplets & floorlets
@ Pricing Caps & Floors

© Market Quotes for caps & floors

© Negative Rates
@ Negative Rates Models for caplets

© The Bachelier Model for caplets

© The Displaced Black Model
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Caps & Floors
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Caplet

A caplet is a call option on the LIBOR rate.

The amount of the payment of every caplet expiring at time T; will occur at
time T;41 and is equal to:

AT, Tipa X (L(TH Ti+1) - LX)+ x N.

Given that at the option expiry we have:
F(7—la 7—ia 7—i+1) = L(7—I7 7—i+1)
we can write the caplet payoff in terms of forward rate

T, Tia X (F(TH 7-I'7 7-i+1) - LX)+ x N.

Then a caplet is a call option on the simple forward LIBOR rate.

In order to price the caplet we need a model for the forward LIBOR rate.
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Floorlet

A floorlet is a put option on the LIBOR rate.

Similarly, to the caplet, we can write the floorlet payoff in terms of the
forward rate

aTi,TiJrl X (LX - F(7-H 7-I'a 7-i+1))+ x N.

Then a floorlet is a put option on the simple forward LIBOR rate.
In order to price the floorlet we need a model for the forward LIBOR rate.

If we are interested in pricing a floor, we need to price all the floorlets
contained in the cap.
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Cap

@ A cap is a portfolio of caplets on the LIBOR rate.

Cap Payoffs

t Trading date

To 15t reset date

i N\ Nxapnx(L(To, T1)—L)*
N\
Ti1

T N Nxar,nx(L(Tia, Ti) = Lo)©
Tin N\ Nxar 7, x (L(Ti, Tipn) = L))"
N

T, Nxar, 7, % (L(Th1, Tn) — Le)"

@ At each date a different caplet is expiring.

@ Notice that last reset date occurs at time T,,_; and T, is last payment date.
Usually, t < Ty, i.e. the trading date represents also the first reset date.
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Floor

@ A floor is a portfolio of floorlet on the LIBOR rate.

@ The same considerations as for a cap hold.

Floor Payoffs
t Trading date
To 15t reset date
+

Tl \, N x OZTO’T1 X (LX — L(To, Tl))
Ny
Ti1

Ti N Nxar 7% (L—L(Tioy, T)"
Tin N\ Nxar 1, x (L= L(Ti, Tiw)) "
AV

Tn Nxar, 7, %(Le—L(Th1, Tp)"
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At-the-money caps & floors: The put-call parity

@ The difference between the payoff of a cap and a floor is

n—1
> ar 7 (L — L),
i=0

i.e. the payoff of a forward starting payers swap.

@ Therefore, if cap/floor strike L, is equal to the forward swap rate the swap
has zero value and therefore the cap and floor must have the same price and
we say that the cap and the floor are at-the-money.

@ A caplet and a floorlet written on the same reference rate and having same
reset and payment dates are at-the-money if their common strike is equal to
the simple forward LIBOR.
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Fact (Caplet Pricing using martingale modelling)

If P(t, Tiy1) is the observed discount factor for maturity T;i1, the price of the
caplet is: ,
ar, T X P (8, Tig1) X Be™ (F (T3, Ti, Tin) — L) ™

Under the pricing T;1 measure F (t, T;, T;11) is a martingale.
The most popular models assume that the forward libor is

o a lognormal martingale (Black Model) G B-A\
[F (67 To) = o (e T, Ton) e
e or a Gaussian martingale (Bachelier Model) A M

L"F(r, Ti, Tiga) = 0,d WP 1)

o or a shifted lognormal martingale (Displaced Black)

dF (t, Ty, Tis1) = 07 (F (¢, Ti, Tigr) + ) dWWKg

B—
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Black Model for caplets & floorlets,
caps & floors
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Black GobA
dX(t) = o X(t)dW(t)

WINECE D)
X(T) = X(t)e” 2z HoW(D-w()
op( =1 (IC)=M(.T))?
f(x) = ( (A )>.
X\/27ro’2(T—t)

M(t, T) = Ec (In(X(T))) |

= In(X(t)) — (T oy
Ee (X(T)) = X(1).
E. (X(T) — K)T)
= X(t)N (ch) — KN (o).

[*)]
o

Lognormal Density fx(x)
N
o

20 o X\ L e2(T=1) 8
dip = —I ( K,732(T_t)2 .
0 | | |
0% 25% K 5% 7.5% 10%

Forward Rate
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Fact (Lognormal Martingale Model and the Black Formula)

Assume X(t) to be a lognormal martingale under the "pricing” measure
dX (t) = ox(t)X (t) dW™™(t),

where ox refers to the percentage or lognormal volatility. It follows that

E ((X(T) = K)") = X(IN () = KN (cb),

where
v X8 + 1v(¢, T)
b2 Z
and

V(t, T) =ox(T —t).

If 0%(t) is time-varying, then V/(t, T) = ft o%(s)ds
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The Black Formula for pricing caplets and floorlets

If the simple forward rate has dynamics under the pricing measure given by
dF (t, Ti, Tir) = oiF (t, T, Tiya) WP (1),

the values at date t of European options with strike L, and maturity date T; on

the simple forward (T s Tieq ) are:

Caplet(t) = P(t, T,'+1) X (F(I‘7 T;, T,'+1) x N (d{) — L, % N (d2’)) Qi1
Floorlet(t) = P (t, Tiy1) X (L« x N (—=d}) — F (t, i, Tiz1) X N (=dj)) i1
where: Blo-cke- Formnter

in (&I 4 ve, T)

di = b i =di — V(L T,

V(t, Ti)

22
“Tdz, V(6 T) =02 x (T; — t).

1 X
— e
V 27T [oo
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The Black Greeks

Let T; to be the caplet maturity and T;.; to be the payment date.

@ The Delta, i.e. the first derivative of the caplet price with respect to the
underlying rate F (t, T;, T;y+1) (i.e. (—1) x DV01), is given by:

A=P(t, Tis1) x N (df) x ar, 7,
@ The Gamma, i.e. the second derivative, is given by:

P(t, Tiy1)

= di L
VT Fe T o) () > amm

where n(x) is the standard normal density function.

@ The Vega, i.e. the first derivative of the caplet price with respect to the
volatility parameter is given by:

v=P(t, Tis1) VT — tF (t, T, Tiz1) n (df) x a1, 7y

@ Expressions for the remaining Greeks can be found in the Martellini et al.

book, page 512.
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Example (Pricing a 9x12 caplet using Black)

@ The 9m discount factor is 0.9631944. The 12m discount factor is 0.9512294.
@ The 9x12 simple forward rate is

1 (0.9632

=— | ———-1) =5.0134%.
0.25 \ 0.9951 ) 2B

@ In addition, the caplet strike is 4.50%. The (constant) percentage volatility is
10%. Therefore:

In (5.0134%) +30.12 % 0.75

4.50%
dy = — 13321, dy = dy—/0.12 x 0.75 = 1.2455,
' V012 x 0.75 2

and
N(dy) = 0.908593, N(d>) = 0.893533.

@ Therefore

c(t) = 0.951229 x (5.0134% x 0.908593 — 4.50% x 0.893533) x 0.25 = 0.0013009.

@ The caplet DV01 is —0.951229 x 0.908593 x 0.25.
Pricing of Caps SMM269 16 /72




Pricing a Cap (Floor) using the Black formula

@ A cap (floor) is a collection of caplets (floorlets), so it is a basket of call
(put) options and its price will depend on the strip of future simple forward
rates (t < Top < ... < Tp_1 < Tp):

F(ta T07T1)7"' 7F(t7 Tn—lan)a

characterized by percentage volatilities (named forward-forward
volatilities):
00, " ,0n-1-
o By additivity, the cap price is equal to the sum of the prices of the single
caplets®:
n—1 i .
> ot 7o X P(t, Tig1) x (F(t, Ty, Tig1) X N (df) — L x N (d5)) x N.
i=0
@ Similarly for the floor, we have
n—1 ) .
> ar, 7 X P(t, Tig) X (Le x N (=df) — F(t, T, Tiga) x N (—df)) x N.
i=0

=

?ln a standard cap the caplet that resets in t is not included. So Tp > t




Example (Pricing a Cap using a flat volatility)

Sheet: ExampleCapFloorATM

Time  Discount Period Fwd. di do Fwd Black Caplet
Factor Rate Prem
0 100.00%
0.5 99.501% 0x0.5
1 98.807% 0.5x1 1.405% -0.8031 -0.9091 0.017% 0.0167% 84
15 98.069% 1x15 1.506% -0.0687 -0.2187 0.076% 0.0741% 370
2 97.239% 15x2 1.707% 0.6585 0.4748 0.222% 0.2155% 1,078
| Cap 1,532 |

Table: Cap Term: 2 years, Caplet Tenor: 0.5; Strike: ATM; Flat Vol.

1,000,000

15%, Face Value

The Cap price is the sum of caplet prices 6x12, 12x18 and 18x24:

84 + 370+ 1,078 = 1,532.

Let us detail the computation concerning the 18x24 caplet.
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Example ((...continued: pricing the 18x24 caplet))
@ We compute the ATM strike

0.99501 — 0.97239
K = = 1.5385%.
0.5(98.807% + 98.069% + 97.239%)) &
@ We compute d; and d>
In (£27% ) 1 1% (0.15)2x 1.5
d = (15558 + 3 — 0.6585; d» — 0.6585 — 0.15 x v/1.5

0.15 x V1.5

© We compute the forward premium
(1.707% x N (0.6585) — 1.5385% x N(0.4748)) x (2 — 1.5) = 0.111%.
@ The present value of the forward premium is
0.97239 x 0.111% = 0.1078%.
@ The 18x24 caplet price is

1,000,000 x 0.1078% = 1, 078.

(@©Gianluca Fusai (Cass ) Pricing of Caps SMM269
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Market Quotes for caps
The volatility surface
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The term structure of implied volatilities

See Veronesi, section 20.1.1

@ The OTC market quotes the implied volatility for caps and floors (i.e. the
strike L, is set equal to the forward swap rate) of different maturities and
different strikes.

Then the implied volatilities are transformed in prices, pricing all the caplets
using the Black formula (or some variants of it) and the same volatility.

The quoted implied volatility is called flat or par volatility.

The flat volatility is a kind of "average volatility” of the set of individual
caplet volatilities: in a 2 year US cap it would apply to all seven caplets.

If we plot these implied volatilities against maturity, we obtain the so called
term structure of implied cap volatilities.
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The implied cap volatility surface

0.45

0.4

The

volatility surface of cap volatilities. June 2005
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1. How to use the volatility surface

@ Let us suppose we aim to price a 3 year cap with 2% strike written on EUR
LIBOR

» This cap is made of 6x12, 12x18, 18x24, 24x30, and 30x36 caplets.
» From the volatility surface, we notice that the 3 year flat volatility
corresponding to a strike of 2% is equal to 66.18%.

@ Therefore, we price all the above caplets using the Black formula in which we
input the volatility value of 66.18%.
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2. How to use the volatility surface

Let us suppose we aim to price a 4 year cap with 2% strike written on EUR
LIBOR
> This cap is made of 6x12, 12x18, 18x24, 24x30, 30x36, 36x42 and 42x48
caplets.
» From the Volatility surface, we notice that the 4 year flat volatility
corresponding to a strike of 2% is equal to 57.80%.

Therefore, we price all the above caplets using the Black formula in which we
input the volatility value of 57.80%.

Notice that the 3 and 4-years caps have in common five caplets (6x12,
12x18, 18x24, 24x30, 30x36).

These caplets are priced with a different volatility depending on the cap
maturity.

It is like when we price two bonds with different maturity using the
yield-to-maturity (ytm). Cash flows falling on the same dates are discounted
using different ytm depending to the reference bond.

@ It is a market convention. It is important to know that it is used.
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Flat Volatility

@ When we price a cap we assume that the same volatility applies to all of the
caplets making up the cap.

@ Indeed, this is the market convention to quote caps and floors. The quoted
volatility is called flat volatility
Flat Volatility. The flat volatility of a cap with maturity T is the quoted
volatility of o(T) that must be inserted in the Black (or Bachelier/Displaced
Black) formula for each and every caplet that makes up the cap, in order to
obtain a dollar price for the cap.

@ Notice that the flat volatility is applied to caps, not caplets, similarly to the
concept of yield to maturity that is applied to bonds and not zero-coupon
bond.
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Example (Using the volatility surface)

Given the market information about the volatility surface, price ATM caps with 1,
2 and 3 years to expiry. Caplerts have semi-annual tenor. The following
information about the discount curve is available.

| Term  Discount Factor |

0 100.000%
0.5 99.501%
1 98.807%
15 98.069%
2 97.239%
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Example ((...ctd) Computing ATM Strikes)

See Excel File: Fl_BlackModel&co sheet: ExampleCapVolSurface
For ATM Caps, the strike is equal to the forward swap rate
The strike of the 1 Y ATM cap is

0.99501 — 0.98897

— 1.49489
0.5 x (0.98807) e

The strike of the 2 Y ATM cap is

0.99501 — 0.97239

= 1.53829
0.5 x (0.98807 + 0.98069 + 0.9239) 5382%

The strike of the 3 Y ATM cap is

0.99501 — 0.95300

= 1.73029
0.5 x (0.98807 + 0.98069 + 0.9239 + 0.9620 + 0.9530) &
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Example ((

Table: Pricing ATM caps (Strike=forward swap rate) with different tenors and using Flat

td) Pricing

e caps)

Volatility. Caplets tenor: 6m; Face Value 1,000,000.

ianluca Fusai (Cass )

Pricing of Caps

1 Year Cap
Time DF StartxEnd Fwd Rate Strike Fwd Vol dy dy Caplet
0 100.000%
0.5 99.501% 0x05
1 98.807% 05x1 1.405% 1.405% 125.280% 0.442932 -0.44293 2375
ATM Strike 1.4048% Cap 2,375
2 Years Cap
Time DF StartxEnd Fwd Rate Strike Fwd Vol dl d2 Caplet
0 100.000%
0.5 99.501% 0x05
1 98.807% 05x1 1.405% 1.538% 130.730% 0.36405 -0.56035 2270
15 98.069% 1x15 1.505% 1.538% 130.730% 0.637004 -0.6703 3550
2 97.239% 1.5x2 1.707% 1.538% 130.730% 0.865647 -0.73546 4968
ATM Strike 1.5382% Cap 10,788
3 Years Cap
Time DF StartxEnd Fwd Rate Strike Fwd Vol d1 d2 Caplet
0 100.000%
0.5 99.501% 0x05
1 98.807% 05x1 1.405% 1.730% 62.440% -0.25116 -0.69267 694
15 98.069% 1x15 1.505% 1.730% 62.440% 0.088963 -0.53544 1439
2 97.239% 15x2 1.613% 1.730% 62.440% 0.199412 -0.42499 1718
25 96.200% 2x25 1.807% 1.730% 62.440% 0.38147 -0.24293 2274
3 95.300% 25x3 1.889% 1.730% 62.440% 0.582466 -0.4048 3653
ATM Strike 1.7302% Cap 9,777
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Example ((...ctd): pricing the 18x24 caplet in the 2 year cap))

Let us detail the computation concerning the 18x24 caplet.
@ We compute the ATM strike

0.99501 — 0.97239

K= = 1.5382%.
0.5(98.807% + 98.069% + 97.239%)) %

@ We compute d; and d»

1.5385%
di — — 0.86565
! 1.30730 x V15

In ( 1.707% ) + 1 x (1.30730)% x 1.5

and then d, = 0.86565 — 1.30730 x /1.5 = —0.73546.
© We compute the forward premium

(1.707% x N (0.86565) — 1.5385% x N (—0.73546)) x (2—1.5) = 0.510855%.
@ The present value of the forward premium is

0.97239 x 0.510855% = 0.496751%.

© The 18x24 caplet price is 1.000. 000 x 0.496751% = 4. 968.



Example (At the money floor)

@ In our example, relative to pricing ATM caps we have set the strike equal to
the forward swap rate

@ In particular, for the 2 year cap we set K = 1.5382%, (1st reset in 6m, last
payment in 24 m, payment dates: 12m, 18m, 24m).

@ The we have obtained that the cap price is 10,788;
@ The corresponding ATM floor is also priced at 10,788.

c. so that the value of the forward starting swap with semi-annual payments
and 18m tenor is 0. See indeed the remark at page 9.

@ The same holds for the 1 and 3 year caps and floors.
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Forward Volatility |

Source Veronesi, page. 688-689
@ Let us consider the market quotations of page 19.
> If we aim to price a 2 year cap with strike 2%, we have to price the caplets
6x12, 12x18, 18x24 using a flat implied volatility of 103.25%.
> If we aim to price a 3 year cap with strike 2%, we have to price the caplets
6x12, 12x18, 18,24, 24x30 and 30x36 using a flat implied volatility of 66.18%.
@ This implies that the caplets 6x12, 12x18 and 18x24 have a volatility of
103.25% when they are part of the 2-years cap, but a lower volatility
(66.18%) when part of a 3-year cap.

@ The fact that the same caplet has different volatilities depending on which
cap it is part of may suggest at first that there is a large inconsistency in the
traders’ quotes of caps, but this is in fact not correct.
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Forward Volatility Il

@ The quoted (or flat) volatility, which is a convention that traders in the
market place adopt to exchange caps and floors, and a second one is the no
arbitrage (forward) volatility, which instead would call for the same caplet
to have the same volatility independent of which cap it is part of.

The forward volatility of a caplet with maturity T and strike rate K is the
volatility og(T) that characterizes that particular caplet, independent of
which cap the caplet belongs to

@ Forward volatility is applied to caplets while the flat volatility is applied to
caps.

@ The forward volatilities are going to be the no arbitrage ingredients for the
pricing of other more complex securities.

o Flat volatilities are a nonlinear average of forward volatilities, so in general
their appear to be smoother than forward volatilities
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How do we extract the forward volatilities from flat volatilities?

@ For example, let us price a 3 year cap (assume caplets have annual tenor).
We can price it in two ways

1. Using Flat Volatility
Cap(3, v(3)) = caplet(1x2, v(3)) + caplet(2x3, v(3))
2. Using Forward Volatility
Cap(3,0F(1),0r(2))) = caplet(1x2,0£(1)) + caplet(2x3, o£(2))

3. Extracting the Forward Volatility: Given v(3) and o(1), we can solve for
or(2) the equation

caplet(1x2, v(3))+caplet(2x3, v(3)) = caplet(1x2, o (1))+caplet(2x3, a£(2))

4. Some interpolation is however needed.
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Extracting Forward Volatilities from Flat Volatilities |

Excel File: Fl_BlackMo&Co.xIsx
Sheet: ExampleCapFWDVol

Example (Extracting Forward Volatilities: 1Y FWD VOL)

Table: We set the 1Y FWD VOL equal to the 1Y FLAT VOL

1 Year Cap
Time  DF StartxEnd Fwd Rate Strike Flat Vol d1 d2 Caplet FLAT VOL FLAT
PRICE
0 100.000%
05 99.501% 0x05
1 98.807% 05x1 1.405% 1.405% 118.700%  0.419668  -0.41967 2257 118.70% 2257.4
Tenor 05
Strike 2.0000% Cap 2,257 2257.4
Notional 1000000




Extracting Forward Volatilities from Flat Volatilities Il

Example ((.ctd): Extracting the 2Y FWD VOL)

Table: We set the 1x1.5 and 1.5x2 FWD VOL such that the price of the 2Y CAP is equal
to 7,054 (obtained using a flat vol of 103.25%)

| 2 Years Cap
Time  DF StartxEnd Fwd Rate Strike Flat Vol d1 d2 Caplet FLAT VOL  FLAT
PRICE
0 100.000%
05 99.501% 0x05
1 98.807% 05x1 1.405% 2.000% 118.700%  -0.00124  -0.84057 1488 103.25% 11858
15 98.069% 1x15 1.505% 2.000% 98.584% 0204527  -0.78132 2157 103.25% 2290.9
2 97.239% 15x2 1.707% 2.000% 98.584% 047257 -0.73484 3410 103.25% 3577.9
Tenor 05
Strike 2.0000% Cap 7,054 7054.5
Notional 1000000




Extracting Forward Volatilities from Flat Volatilities Il

Example ((.ctd): Extracting the 3Y FWD

Table: We set the 2x2.5 and 2.5x3 FWD VOL such that the price of the 3Y CAP is equal
to 11,318 (obtained using a flat vol of 66.18%)

Time

0
0.5
1
15
2
25
8]
Tenor
Strike
Notional

DF

100.000%
99.501%
98.807%
98.069%
97.239%
96.200%
95.300%

StartxEnd

0x0.5
0.5x1
1x15
15x2
2x25
25x3
0.5
2.0000%
1000000

Fwd Rate

1.405%
1.505%
1.613%
1.807%
1.889%

Strike

2.000%
2.000%
2.000%
2.000%
2.000%

Flat Vol d1
FwD Vo (
118.700% -0.00124
98.584% 0.204527
98.584% 0.274482
64.423% 0.164298
64.423% 0.453136

i Vsl

-0.84057
-0.78132
-0.71136
-0.47993
-0.56548

Cap

e o et s

Caplet FLAT VOL
1488 66.18%
2157 66.18%
2449 66.18%
1876 66.18%
3349 66.18%

11,318
N -~
=7V

constan—,

FLAT
PRICE

496.1
1208.3
2175.2
4000.0
34383

11,318



Heqing

Heqing

Heqing

Heqing


Extracting Forward Volatilities from Flat Volatilities IV

Table: The term structure of flat and forward volatilities

TERM  FLAT VOL FWD VOL
1 118.70% 118.700%
2 103.25% 98.584%
3 66.18% 64.423%
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Coping with Negative Rates
Bachelier and Displaced Black
models
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The past

@ Rates are significantly positive.
o Volatilities are at normal levels.
@ Quotes are in log-normal volatility or premium.

@ The Black model assumes that the underlying has a zero probability of
becoming negative.
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Figure: Probability density of Black's model for current forward rates F € 1.5%;3%; 7%,
volatility o = 0.3 and time T = 3. Source:
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Table: ICE LIBOR Rates on November 30th, 2016

Tenor CHF EUR JPY GBP uUsD
Spot Next -0.7818 -0.41 -0.08314  0.225  0.43056
1 Week  -0.7952 -0.39386 -0.07329 0.25119 0.45822
1 Month  -0.8178 -0.37957 -0.10971 0.26075 0.62367
2 Month  -0.7856 -0.34643 -0.11086 0.32438 0.7425
3 Month -0.749 -0.325  -0.06743 0.38463 0.93417
6 Month -0.68  -0.21871 0.01114 0.55038 1.28878

1 Year -0.5122  -0.07971 0.10529 0.79244  1.639
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Table: ICE Swap Rates on November 30th, 2016

EUR Rates 1200 GBP Rates 1100 USD Rates 1100

Tenaor

1 Year -0.299 0.429 1.103
2 Years -0.17 0.644 1.318
3 Years -0.114 0.736 1.514
4 Years -0.037 0.832 1.675
5 Years 0.061 0.926 1.806
6 Years 0.172 1.018 1.917
7 Years 0.29 1.106 2.01
8 Years 0.406 1.189 2.086
9 Years 0.517 1.265 2.15
10 Years 0.618 1.332 2.204
12 Years 0.785 1.436

15 Years 0.959 1.528 2.372
20 Years 1.098 1.573 2.447
25 Years 1.136 1.558
30 Years 1.15 1.536 2.489
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Which model with negative rates?

@ We have to handle curves

Generally the negative rates do not have that impact on curves construction
and is a standard process these days

The appearance of significant basis spreads have much more impact
@ We still need to price options

Caps/Floors

Swaptions

CMS Caps/Floors

CMS Spread Options

even FRN: coupons have an implied floor at 0.

@ Market quotes for volatilities of negative strikes do not always exist. We have
to extrapolate market-quoted volatilities into the negative domain.
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d s 93 Settings - Interest Rate Wolatility Cube

18 Use This Contributor in Configuration
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Figure: Black Volatilities quotations nowadays (Nov. 2016).
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Negative rates are a challenge for several reasons

@ It is a particular challenge for structured products with embedded interest
rate options.

@ The Black model for valuing options assumes strikes cannot go negative,
which is a problem for interest rate options books.

@ Indeed the most widely used model for valuing the derivatives assumes rates
cannot go below zero.

@ Changing the models is a huge undertaking and could result in losses when
positions with 0% floors are revalued.
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Implications for a banks business

It might simply refuse to accept negative forward rates, or if there is a
process for identifying and alerting exceptions - that is, items that are not
processed successfully - it might tell the middle office to check that its inputs
and curves are correct.

But given the Black model cannot handle negative rates, an overhaul is
needed to allow for accurate valuations.

Zero Strike Floors (Implicit in many bonds)
Options with negative strikes
Model Choice (Construction of Volatility Surfaces/Hedges/Exotics/...)

IT Systems (Implementation of new models, adjusting existing models): If a
model does crash, the impact for the valuation team will depend on the
quality of the code in the system.
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Figure: An example of a corporate FRN bond with an implicit option with strike at 0
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New Interest rate modelling

If a bank is to change the way it prices implied volatility, it has three real
alternatives.

@ One option is to move to a normally distributed model that allows for
positive and negative strikes (Bachelier or Hull and White, a variant of the
Vasicek model).

@ Others have looked to retain the Black model but shift the strikes into the
positive.

@ Some have also looked at using prices from the interdealer broker market
instead of modelling it themselves. Brokers do not quote all maturities,
however, so the bank would have to interpolate prices for the gaps.

@ Interpolation in prices is very dangerous because these are highly non-linear
prices. The risk is to end up with a gross approximation and inaccuracy.
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The Bachelier Model
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Fact (Gaussian Martingale Model and the Bachelier formula)

Assume X(t) to be a Gaussian martingale under the "pricing” measure
dX (t) = ox (t) dW™M(t).
where ox refers to the absolute or Gaussian volatility. It follows that

Ec ((X(T) = K)") = (X(¢) = K)N(dy) + v/V(E T)n(ch),

where
X(t)— K
dl — )
V(t, T)
and
1 e
n(x) = e 2
(x) or

V(t, T) = 0)2<(t).

If ox(t) is time varying, then V/(t, T) f
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The Bachelier Formula for pricing caplets and floorlets

If the simple forward rate has dynamics given by
dF (t, Ti, Tis1) = o;dWPT™8(t),

the values at date t of European options with strike L, and maturity date T; on
the simple forward rate F(T;, Tit1, Tit1), are:

Caplet(t) =

P(t, Tix1) x ((F(h Ti, Tiva) — LON (df) +/V(¢, Ti)n (d{)) Qi+l
Floorlet(t) =

P(t, Tis1) X ((Lx — F(t, Ti, Tia)) N (=d]) + V/V(t, Ti)n (d{)> TNIET

where:

F(t, T, Tiax) — Ly 1 /X
df = N () = =
L VL, T) =7

_2
2

_2dzn() \/i
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Example (Pricing a 9x12 caplet using Bachelier formula)

@ The 9m discount factor is 1.0010 (9m LIBOR is -0.131%). The 12m discount
factor is 1.0015 (12m LIBOR is -0.203%).

@ The caplet strike is -0.2%. The (constant) absolute volatility is 2.40%.
@ The 9x12 simple forward rate is

1 (1.0010 B .
F =02 <1.0015 1)‘ 0.2162%.

_ —0.2162% — (—0.2%)
(2.40%)2 x 0.75

@ In addition

) = —0.00780,

and
N (d1) = 0.496888, n(d;) = 0.398942.

@ Therefore the caplet price is

1.0015 x <(—0.2162% — (—0.2%)) x 0.496888 + 2.40% x V/0.75 x 0.398942) X 0.25
= 0.002056.
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Figure: Flat volatilities for pricing caps and floors with different terms and strikes in the

Bachelier model
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Negative Rates: Displaced Black

Pricing of Caps SMM269 59 /72



E Displaced Black

< 60 [ dX(t) = o(X (t) + 8)dW/(t) -
z E: (X(T)) = X(¢).

2 E: (X(T) = K)")

q_) = (X(t)+5)N(d1)—(K+5)N(d2).
Q In( XY 41,207

= 40| gy = R )EA (0

£ ’ \Vo2(T—t)

]

c

o0

S

= 20| :
3

E

9p)]

0 | | | |
—1%0% 2.5% 5% 7.5% 10%
Forward Rate

Pricing of Caps SMM269 60 /72



Displacad dfiusion ransitian probabiity density far a=03, =3, and shit 2=000 Displacad dfiusion ransitian probabiity densiy for o=013,1=3, and shit 2=003
m

0} " =TT Fe0
1 F0 4] o |
. Fm0 || | Fym0015
- ]
' ] z
g 1 g . 1
£1m J = .
H . ]
i I
] | 4 n 4
B J
0] B
n —_ 1 )
o4 -DBQ. o o o004 [:1: o4 -om o om o004 [:1:
fi fi
(a) shift s =0.02 (b) shift s = 0.03

Figure: Figure (a) and (b) show the transition probability densities of the displaced
diffusion model for several rates F and two different shift parameters.
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Fact (Displaced Lognormal Martingale Model and the Shifted Black)

Assume X(t) to be a displaced lognormal martingale under the " pricing” measure
dX (t) = ox(t)(X (t) + §)dW™™(¢),

where ox refers to the displaced lognormal volatility and § to the displacement
parameter. It follows that

Ec ((X(T) = K)") = (X(£) + ) N(d) = (K +6) N (),

where

i (X(t’gé) +1v(t, T)
’ V(t, T)

)

and
V(t, T) =ox(T —t).

If ox(t) is time varying, then V(t, T) = ft o%(s)ds
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The Displaced Black Formula for pricing caplets and floorlets

If the simple forward rate has dynamics given by

dF (t, T, Tiva) = oi(F (¢, Ti, Tia) + 6)dWP"e(t),

the values at date t of caplets and floorlets with strike L, and maturity date T; on
the simple forward rate F(T;, T;y1, T;+1), are respectively

caplet(t) =
P(t, Ti1) x ((F(t, T, Tisa) +8) x N (i) — (Le +8) x N () @i i1,

floorlet(t) =

P(t, Tiy1) x

Ly +8) x N (=d}) — (F (t, Ti, Tiy1) +6) x N (—dy)) e it1,

((

where:

L+0

di = - Jdy=di —o\/Ti —t,

F 5 iy i 6
|n( (t,Ti, Tit1)+ )—‘r—%\/(f, T,)

T
e dz CV(t, T)) =0 x (T; — t).

=
=S
Il
ol
é\x
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Example (Pricing a 9x12 caplet using the Displaced Black formula)

@ The 9m discount factor is 1.0010 (9m LIBOR is -0.131%). The 12m discount
factor is 1.0015 (12m LIBOR is -0.203%).

The caplet strike is -0.2%. The (constant) percentage volatility is 120%.

The displacement coefficient is 1%.

The 9x12 simple forward rate is

1 (1.0010 _ o
F= 0.25 <1.0015 1) = 0212,

@ In addition

_ 0, 0,
in (=RELALL) 4 1 % 1.22 X 0.75

dn — — 0.49991,
! V122 x0.75

and
dr = di — V1.22 X 0.75 = —0.53932, N'(d;) = 0.691432, \/(d>) = 0.294834.

@ Therefore the caplet price is 0.0007660 obtained as

1.0015 x ((—0.2162% + 1%) x 0.691432 — (—0.2% + 1%) x 0.294834) x 0.25.
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Conclusions |

@ Different solution methods were discussed to cope with negative interest
rates.

@ The forward rate has a normal distribution under Bachelier's model and it
therewith allows negative forward rates.

+ It does not introduce an additional (shift) parameter.

+ Analytic expressions are available for the call and put price valuations and for
its risk metrics.

- The only disadvantage of the normal models is that they assume a positive
probability on large negative rates.

@ Displaced models limit the largest negative rate.

+ It could be argued that there is a limit to how low rates can go, since storing
(and transporting) cash becomes cheaper than the interest at a certain point.
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Conclusions |l

@ For financial institutions this is different however, because they are obliged by
regulation to have a certain part of their assets stored at the central bank.

- The displacement parameter has to be chosen a priori. This choice is more of
an art than a science.

- When the rate decreases sufficiently, a larger displacement parameter needs
to be introduced and all implied volatilities, valuations and risk metrics have
to be adjusted.

@ More sophisticated solutions (not presented here) are possible, such as the
free boundary models.

+ These models can model rates from the entire real line and do not introduce
an additional parameter.

- Nevertheless, the models have an uncontrollable spike around zero in their
probability distribution, while this is the most crucial area in a low or negative
rate environment.

- There is no accurate analytic (calibration) formula available for the free
boundary SABR model.

- The free boundary models do not have an obvious model interpretation and
are therewith not intuitive for traders.
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Black formula for Asset-or-Nothing Options
An Asset-or-Nothing option has payoff at time T;; equal to:

N xar, 7., % L(Ti, Tita) X 1yr, 140> L,
The Black price is given by
N x ar, 1, x P(t, Tis1) x F (£, Tj, Tis1) x N (df) -
where

In <F(t,7Z,T,-+1)> + %V(t, T,-)
d = 2 V(T =02 x (T — t).

VV(t, Ti)
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Black formula for Cash-or-Nothing
A Cash-or-Nothing option has payoff at time T;;; equal to:

N ar, 1,0 X 1T, Tia)> Lo
The Black price is given by
N x at, .., X P(t, Tis1) x N (d5) .

where

di=di —\/V(t, T).
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Displaced Black formula for Asset-or-Nothing Options
An Asset-or-Nothing option has payoff at time T;; equal to:

N xar, 7., % L(Ti, Tita) X 1yr, 140> L,
The Black price is given by
N x ar, 1., X P(t, Tiz1) x (F (t, Ti, Tiz1) +6) x NV (dj) .
where

di = Eeto V(T = 0% x (Ti — t).

VV(t, Ti)

F(t,T;,T; )
in (EETT ) + v, Th)
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Displaced Black formula for Cash-or-Nothing

A Cash-or-Nothing option has payoff at time T;;; equal to:
N xar 7, % 1yr, 1)L
The Black price is given by
N x at, 1., X P(t, Tis1) x N (d5) .
where

d = b0 V(t,Ti) = 02 x (Ti — t).

V V(L Ti)

in (EETTt) — Lv(e, T))
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Bachelier formula for Asset-or-Nothing options
An Asset-or-Nothing option has payoff at time T;;1 equal to:

N x ar, 7, x L(Ti, Tiz1) X 1y, 70)> L,
The Bachelier price is given by
N X, 1y X P (8, Tisa) X (F (£ Ti, Ten) x N (o) + V/V(E Tn(d]))

where
F(t7 7—/7 7—/+1) - K

TET] V(t, T)) =o* x (T; — t).

G
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Bachelier formula for Cash-or-Nothing

A Cash-or-Nothing option has payoff at time T;;; equal to

N x ot 1, % 17, 10)> L0

The Bachelier price is given by

N x OT; Tipy X P(t, T,'+1) XN(d{) .
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Figure 1: Swap Command in Bloomberg: select swap characteristics of an US Swap
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CAP Cash Flows with Bachelier Model
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Figure 4: Cash flows of a cap



Example (Reconstruct the caplets in Bloomberg)

@ The Cap is composed of different caplets. Let us consider the last caplet.
@ Valuation Date: 2nd March 2018;

Caplet Maturity Date: 31st Aug, 2022;

Caplet Payment Date: 2nd March, 2023;

Caplet Tenor aT,,71,: 0.50278=(181 days/360)

Caplet Time to Maturity T7; — t: 4.50137, that is computed using the
ACT/ACT ISDA convention (see accompanying Excel file for exact
calculations)

@ Forward Rate F: 1.22753%, computed from the discount factors relative to
the Maturity and Payment Dates.

Caplet Strike K: 0.49023%;

Forward Normal Volatility ¢: 0.6030% =(quoted vol/10000);
Notional N: 10,000,000;

Discount Factor to the Maturity date P(t, T1): 0.983386.
Discount Factor to the Payment date P(t, Tp): 0.977354.

(@©Gianluca Fusai (2018-19) Caps & Swaptions in Bloomberg March 25, 2020 9/34



Example (Reconstruct the caplets in Bloomberg)

@ We can apply the Bachelier formula

P(t, T) x (<F C RN () + V(s T1>n<d1>) Xz, 7 x N,

where
V(t, 1) = o2 x (Ty —t) = (0.6030%)2 X 4.50137 = 0.000163674,

and

dh — F—K  1.22753% —0.49023% _ 0.73730% 0.57631
' V(t, T1) 0.000163674 0.012794 ' ‘

@ Therefore

N (0.57631) = 0.71780, and n(0.57631) = 0.33790.
@ Finally, the caplet price (column PV) is 47,248.54

= 0.977354 x (0.7373% x 0.7178 4 0.012794 x 0.3379) x 0.50278 x N.
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Example (Intrinsic and Time Value)

@ In addition, we have the Intrinsic Present Value of the caplet is
P(t, T2) x max (F — K;0) x ar, 1, X N,
and we obtain
0.977354 x max (1.22753% — 0.49023%; 0) x 0.50278 x N = 36230.3.
o By difference with the caplet price we also obtain the Time Value
47,248.54 — 36230.3 = 11018.2.

@ The Fair Value of the cap (Cap NPV) is obtained by summing the PV of
each caplet

0.00+1.25+230.85+ - - - +33,778.11 + 42, 438.37 - 47, 248.54 = 179, 019.;6
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Example (Cap Implied Volatility)

@ The Cap Implied Volatility is then obtained by pricing all the caplets using
the same volatility (so called Flat Volatility) mantaining constant the value

of the cap.
@ This amounts to solve a non-linear equation, returning as solution

Table 1: From forward volatilities to flat volatility.

Payment Date Cap Vol (bps) Caplet Price Flat Vol Caplet Price

03 September 2018 30.84 0.00 50.68 3.00
04 March 2019 30.61 1.25 50.68 149.62
02 September 2019 32.54 230.85 50.68 1,559.20
02 March 2020 31.95 1,825.55 50.68 5,325.41
02 September 2020 44.07 9,709.90 50.68 11,578.54

02 March 2021 44.34 16,470.18 50.68 18,461.15
02 September 2021 53.94 27,316.62 50.68 26,232.76
02 March 2022 54.18 33,778.11 50.68 32,617.31
02 September 2022 60.28 42,438.37 50.68 39,128.68
02 March 2023 60.30 47,248.54 50.68 43,963.71

CAP NPV 179,019.36 179,019.36
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Example (Sensitivities: Cap DV01)

@ We compute the sensitivity of the CAP to a shift in the forward curve. In
practice, the DVO1 of each caplet is

—P(t, Tj) x N(dy) x a7, , 7, X N x0.01%
@ With reference to the caplet expiring in March 2023, we obtain
0.977354 x 0.71780 x 0.502777778 x 10,000,000 = —352.719.

@ If we sum the DVO1 of the different Caplets we obtain the CAP DV01=

0.000 — 0.222 — 17.945 + - - - — 336.642 — 348.256 — 352.719 = —1951.3384

(@©Gianluca Fusai (2018-19) Caps & Swaptions in Bloomberg March 25, 2020 13/34



Example (Sensitivities: Cap Gamma)

@ We compute the second order sensitivity of the CAP to a shift in the forward
curve.

@ In practice, the Gamma of each caplet is

n(dy)

—P(t, T,') X m

xar, 1, %X Nx0.01%

@ With reference to the caplet expiring in March 2023, we obtain

0.33790
0.977354 x ———"—_ % 0.502777778 x 10,000,000 x (0.01%)? = 1.298.

v/0.01279

@ If we sum the Gamma of the different caplets we obtain the CAP Gamma

0.000 4+ 0.037 +1.218 + - - - +1.760 + 1.465 4 1.298 = 17.198

(Bloomberg gives a sligthly different value of 25.39)
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Example (Sensitivities: Cap Vega)

o Let us reprice the cap by shifting up by 1 basis points all cap vols (so for
example with reference to our caplet we use a volatility of 60.3001 basis
points instead of 60.30).

@ We obtain a CAP NPV equal to 179,019.58.

@ The cap vega is estimated as forward difference

179,019.58 — 179, 019.36
0.0001

= 2166.41.
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Figure 5: Settings for the construction of the discount curve in pricing the cap
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Figure 6: Settings for the construction of the volatility surface in pricing the cap



Pricing Caps with the Black Model
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CAP Cash Flows with Black Model
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Example (Reconstruct the caplets in Bloomberg)

@ The US Cap is composed of different caplets having quarterly cash flows. Let
us consider the last caplet.

Valuation Date: 12th of March 2018;

Caplet (Reset) Maturity Date: 8th December, 2022;
Caplet Start Date (T7): 12th December, 2023;
Caplet Payment Date (T3): 13th March, 2023;
Caplet Tenor (a1, T,): 0.252778=(91 days/360)

Caplet Time to Maturity (Ty — t): 4.74521, that is computed using the
ACT/ACT ISDA convention (see accompanying Excel file for exact
calculations).

o Forward Rate (F(t, T1, T2)): 2.88711%, computed from the discount
factors relative to the Maturity and Payment Dates.

Caplet Strike K: 2.74712%;

Forward Lognormal Volatility (¢): 28.82%;

Notional (N): 10,000,000;

Discount Factor to the Maturity date P(t, Ty): 0.871572;
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Example (Reconstruct the caplets in Bloomberg)

@ We can apply the Black formula

P(t. T2) X (F(t, T1, T2)N(d1) - KN(d2)) X ATy, T, X N,

where
V(t, T1) = 0® x (Ty — t) = (0.2882)% x 4.74521 = 0.304133,
and
in (328741% ) + 30.304133
dy = =0.39307, and dy = —0.23473.

v/0.394133

@ Therefore
N (0.39307) = 0.65287, and A/ (—0.234730) = 0.40721.

@ Finally, the caplet price (column PV) is 16,881.41 (Bloomberg gives
16881.01)

= 0.871572 x (2.88711% x 0.65287 — 2.74712% x 0.40721) x 0.25278 x N.
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Example (Intrinsic and Time Value)

@ In addition, the Intrinsic Present Value of the caplet is
P(t, To) x max (F(t, T1, T2) — K;0) x a1,—1y x N,
and we obtain
0.871572 x max (2.88711% — 2.74712%; 0) x 0.25278 x N = 3084.2.
o By difference with the caplet price we also obtain the Time Value
16881.43 — 3084.2 = 13797.26.

@ The Fair Value of the cap (Cap NPV) is obtained by summing the PV of
each caplet

5.96 4+ 126.95+791.94 + - - - +16141.37 4+ 16511.74 4 16881.43 = 184, 219.6.
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ed Volati

y)

@ The Cap Implied Volatility is then obtained by pricing all the caplets using
the same volatility (so called Flat Volatility) mantaining constant the value
of the cap.

Example (Cap Imp

@ This amounts to solve a non-linear equation, returning as solution 24.25%.

Table 2: Pricing a cap using forward forward vols and flat volatility

Payment Date Cap Vol (bps) Caplet Price Flat Vol Caplet Price
12 September 2018 14.14 5.96 24.35 210.16
12 December 2018 13.71 126.95 24.35 1033.86

12 March 2019 13.07 791.94 24.35 2839.19

12 June 2019 17.97 3031.98 24.35 4634.48

12 September 2019 18.35 4885.19 24.35 6660.33
12 December 2019 18.7 6058.89 24.35 7878.26
12 March 2020 19.09 7073.26 24.35 8896.10

12 June 2020 23.42 9650.50 24.35 9997.31

14 September 2020 23.48 10754.15 24.35 11103.75
14 December 2020 23.49 11077.44 24.35 11427.72
12 March 2021 23.54 11209.42 24.35 11541.47

14 June 2021 25.78 13356.10 24.35 12712.36

13 September 2021 25.8 13296.30 24.35 12644.17
13 December 2021 25.82 13650.50 24.35 12970.49
14 March 2022 25.83 13994.83 24.35 13292.38

13 June 2022 28.7 15721.64 24.35 13612.28

12 September 2022 28.81 16141.37 24.35 13931.96
12 December 2022 28.82 16511.74 24.35 14252.91
13 March 2023 28.82 16881.43 24.35 14580.38

CAP NPV 184,219.58 184,219.57
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Example (Sensitivities: Cap DV01)

@ We compute the sensitivity of the CAP to a shift in the forward curve. In
practice, the DVO01 of each caplet is

—P(t, To) x N(d1) x a1, 1, X N X 0.01%
@ With reference to the caplet expiring in Dec. 2022, we obtain
0.871572 x 0.64018 x 0.252778 x 10,000, 000 x 0.01% = —141.04.
@ If we sum the DVO01 of the different Caplets we obtain the CAP DV01=
—18.10 —49.76 — - - - — 141.32 — 141.04 = —2,394 .84.

(Bloomberg gives a sligthly different value of 2316.81).
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Example (Sensitivities: Cap Gamma)

@ We compute the second order sensitivity of the CAP to a shift in the forward
curve.

@ In practice, the Gamma of each caplet is

r— P(t, T2)

CoyTL—tx F(t, Tq, Tp)

where n(.) is the standard normal density function.

x n(d) x &, T, x N x (0.01),

@ With reference to the caplet expiring in December 2022, we obtain

0.871572

1/ 0.2814187

@ If we sum the Gamma of the different caplets we obtain the CAP Gamma

x n(0.3589372) x 0.252778 x 10, 000, 000 X (0.01%)2 = 0.5381.

1.2615 4 1.7284 4-1.7432 + - - - 4 0.5830 + 0.5599 + 0.5381 = 18.31

(Bloomberg gives a sligthly different value of 20.23).
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Example (Sensitivities: Cap Vega)

@ The Vega, i.e. the first derivative of the caplet price with respect to the
volatility parameter is given by:

v="P(t, To) X /T1 —tx F(t, Ty, T2) x n(dy) x a, 7, X N x 1%.

@ With reference to the caplet under examination, we have
0.871572 x /4.74521 x 2.88711% x n(0.358937) x 0.252778 x N x 1% = 518

@ Summing the vega across caplets with different maturities, we obtain a CAP
vega equal to 7,008 (Bloomberg gives 6,832).

@ An approximate vega estimate is obtained by repricing the cap by shifting up
by 1 basis points all cap vols (so for example with reference to our caplet we
use a flat volatility of 24.36% instead of 24.35%).

@ We obtain a CAP NPV equal to 184,289.65. The cap vega is estimated as
forward difference

184, 289.65 — 184, 219.58

0.0001 = Moy

not very different from the 7008 estimate obtained above.
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Volatility Surface for the Black Model

Interest Rate Volatility Cube

Source BEIR.
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Pricing Swaption with the Black
Model
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Swaptions in the Bachelier Model
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Swaptions in the Bachelier Model
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Swaptions in the Bachelier Model
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Example (Swaption characteristics)

The swaption has the following characteristics
@ Valuation Date: Feb. 28, 2018;
@ Swaption Expiration Date: Feb. 28 2019 (365 days);
Underlying Swap Starts: 4th March, 2019;
Underlying Swap Ends: 4th March, 2024;
Fixed Leg Frequency: S/A, 30/360;
Floating Leg Frequency: Q, ACT/360;
Strike (ATM): 2.905289%;
Forward Swap Normal Volatility o: 0.6955% =(quoted vol /10000);
Notional N: 10,000,000;
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Example (Pricing the swaption)

@ We can apply the Bachelier formula

i P(t, T tX, 1,i X ((S—K)N(dl)-i-\/V(t, T1>n(d1>> Xar,—1; X N,

where
V(t, T1) = 0 x (T1 — t) = (0.6955%) x 1 = 0.0000484,
and
o S—K _ 2905289% —2.905280% _
YTV ) 0.0000484 '

@ Therefore N'(0) = 0.5, and n(0) = 0.398942. The forward swap rate is as the
ATM strike. The annuity value is equal to 4.51927 and has been computed
referring to the discount factors and the accrual factors of the fixed leg.

@ Finally, the Swaption price (column PV) is 125,393.55

= 451027 x ((2.9053% — 2.9053%) x 0.5 + /0.0000484 x 0.398942) X N.
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Case Study: Pricing a Corporate Bond |

Trade Date: 7th of March 2018
Maturity Date: 15 of May 2023

Payment Frequency: Annual

Day Count Convention: ACT /360, modified following business day

Reset in Advance

Current coupon rate

Coupon formula
CPN RATE = EURIBOR + 20 BP; MIN CPN 0.60%.

o Consistently with market information (Libor rates, futures prices, swap rates,
term structure of cap volatilities), provide the Gross Price, Accrued Interest
and Clean Price.

Estimate the CVA of the contract.
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Data collection |

We have collected the following market information
LIBOR rates
ICE https://www.theice.com/marketdata/reports/170

[+9]

@ Swap rates

b ICE Source: https://www.theice.com/marketdata/reports/180

¢ Markit Calculator
https://www.markit.com/markit.jsp?jsppage=pv.jsp

@ Volatility surface

d Source: no public available data

@ Libor rates on the last reset date

e Source:
https://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
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Data collection I

Table: Libor and Swap Rate Quotes

| TERM Rate Market ~TERM  Rate  Market |

1 days -0.44186 LIBOR 1 Year -0.31 SWAP
1 Week -0.422 LIBOR 2 Years -0.122  SWAP
1 Month  -0.40657 LIBOR 3 Years 0.081 SWAP
2 Month  -0.39857 LIBOR 4 Years 0.284 SWAP
3 Month  -0.37929 LIBOR 5 Years 0.466 SWAP
6 Month  -0.33114 LIBOR 6 Years 0.625 SWAP
1 Year -0.255 LIBOR 7 Years 0.765 SWAP
8 Years 0.888 SWAP

9 Years 0.998 SWAP

10 Years 1.095 SWAP

12 Years 1.256 SWAP

15 Years 1.426 SWAP

20 Years  1.568 SWAP

25 Years  1.607 SWAP

30 Years 1.611 SWAP
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Data collection Il

(@©Gianluca Fusai (2019-20)

Table: LIBOR rates on the last reset date

1w
2w
Im
2m
3m
6m
9m
12m

15/05/2017

-0.380
-0.373
-0.374
-0.341
-0.330
-0.251
-0.179
-0.127
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Data collection IV

Interest Rate Volatility Cube
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Coupon Profile and its decomposition

-050%  000%  050%  100%  150%  200%  250%  3.00%
Figure: The coupon formula

The coupon can be decomposed as
0.6% + caplet(K = 0.4%)
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The Pricing Procedure

Build the discount curve
Build the payment schedule
Interpolate the market rates on the coupon payment dates

Decompose the coupon in elementary components.

Using the appropriate pricing model, price each component of the bond
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Discount Curve

@ It has been obtained using the usual bootstrapping procedure (we did not
consider the weekends and holidays adjustments but this should be done).

We have used the constant forward rate method to interpolate on the missing
dates.

Interpolate the market rates on the coupon payment dates

Decompose the coupon in elementary components.

Using the appropriate pricing model, price each component of the bond
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‘ TT™ DF Tenor Annuity Fwd Rate  Fwd DF Swap Rate  Fitting
0.002778 1.000012  0.002778
0.019444 1.000082 0.019444
0.083333  1.000339  0.083333
0.166667  1.000665 0.166667
0.25 1.000949 0.25
0.5 1.001658 0.5
1 1.00311 1 1.00311 -0.3100%
2 1.002447 1 2.005556  0.0661% -0.1220%
3 0.997567 1 3.003124  0.4891% 0.0810%
4 0.988663 1 3.991787  0.9006% 0.2840%
5 0.976846 1 4.968633  1.2097% 0.4660%
6 0.962928 1 5.931561  1.4454% 0.6250%
7 0.947376 1 6.878937  1.6415% 0.7650%
8 0.930651 1 7.809588  1.7972% 0.8880%
9 0.912949 1 8.722537  1.9390% 0.9980%
10 0.894691 1 9.617229  2.0407% 1.0950%
11 0.875866 1 10.49309  2.1493%  0.978959 1.1830%
12 0.857437 1 11.35053  2.1493%  0.978959 1.2560%  4.85E-11
13 0.838902 1 12.18943  2.2095%  0.978382 1.3216%
14 0.820766 1 13.0102 2.2095%  0.978382 1.3776%
15 0.803023 1 13.81322  2.2095%  0.978382 1.4260% 5.05E-10

Table: Bootstrapped Discount Curve
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Coupon Number Reset Date Payment Starts Payment Ends Adjust for holidays DAYS CPN DAYS

09 March 2018 09 March 2018 0
1 15 May 2017 15 May 2017 15 May 2018 15 May 2018 67 365
2 15 May 2018 15 May 2018 15 May 2019 15 May 2019 432 365
3 15 May 2019 15 May 2019 15 May 2020 15 May 2020 798 366
4 15 May 2020 15 May 2020 15 May 2021 17 May 2021 1165 367
5 17 May 2021 17 May 2021 15 May 2022 16 May 2022 1529 364
6 16 May 2022 16 May 2022 15 May 2023 15 May 2023 1893 364

Table: Coupon Dates
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Interpolated discount curve |

Table: (Linear) Interpolated Spot Rates and Discount Factors

| DAYS  TTM  Int. Spot Rate  DF |
67  0.183562 -0.00395 1.00072
432 1.183562 -0.00276 1.00327
798 2.184307 ~0.00085 1.00185
1165 3.189596  0.001198  0.99619
1529 4.186747  0.003193  0.98672
1893 5.183934  0.004982  0.97451
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Interpolated discount curve Il

Spot and Forward Rates
0.014
0.012
0.01
0.008
0.006

0.004 I
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Interpolating Volatility

Table: Market Implied Volatility for different terms and strikes

Strikes
TERM 0.25% 0.50%

5 45.64  49.47
6 48.75  52.17

We (linearly) interpolate across strikes and maturities to obtain a volatility for the
strike 0.4% and time to maturity of 5.19178 years equal to 48.48726 basis points.
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Table: Pricing the bond components

Fixed
Component Caplet Component

Fwd Rate AF Fixed | Vol Strike TT™M d1 N(d1) n(d1) Fwd Premium |
-0.127% 1.01 0.6083% 0.40% 0.0000%
-0.250% 1.01 0.6083% 0.48487% 0.40% 0.18356 -313.04% 0.09% 0.30% 0.0001%
0.139% 1.02 0.6100% 0.48487% 0.40% 1.18356 -49.42% 31.06% 35.31% 0.1070%
0.558% 1.02 0.6117% 0.48487% 0.40% 2.18431 22.05% 58.73% 38.94% 0.3790%
0.949% 1.01 0.6067% 0.48487% 0.40% 3.18960 63.36% 73.68% 32.64% 0.6945%
1.240% 1.01 0.6067% 0.48487% 0.40% 4.18675 84.62% 80.13% 27.89% 0.9600%

@ The gray cell in the column forward rate refers to the rate (EURIBOR at
reset date) to be used to compute the current coupon;
@ Fixed component has been obtained by multiplying the Fixed Rate of 60 basis
points by the accrual factor (AF)
@ The caplet component has been obtained by computing the forward premium
of the caplet according to the Bachelier model.
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Table: Present Value of the coupons and Bond Pricing

Fixed Fwd. Premium  Expected Coupon DF PV(Exp. Cpn) ‘

0.6083% 0.0000% 0.6083% 1.00072 0.6088%
0.6083% 0.0001% 0.6084% 1.00327 0.6104%
0.6100% 0.1070% 0.7170% 1.00185 0.7184%
0.6117% 0.3790% 0.9907% 0.99619 0.9869%
0.6067% 0.6945% 1.3012% 0.98672 1.2839%
0.6067% 0.9600% 1.5666% 0.97451 1.5267%
Sum 5.7351%
| Valuation |
PV
Coupons 5.7351%
Notional 97.4507%

Current Coupon 0.6083%
Accrued Interest 0.4967%
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Bond Sensitivity & Hedging |

@ We examine the sensitivity of the bond to parallel shift of the term structure.

@ We take the interpolated spot curve, we shift it up and down by 1 basis point
and we recompute the discount curve and then we reprice the bond.

Table: Shifted Curve

‘ DAYS TT™ | Spot Rate Shift New Shifted Curve DF

67 0.183562  -0.3948%  0.0100% -0.3848% 1.00071
432 1.183562  -0.2759%  0.0100% -0.2659% 1.00315
798  2.184307 -0.0847%  0.0100% -0.0747% 1.00163
1165  3.189596  0.1198% 0.0100% 0.1298% 0.99587
1529  4.186747  0.3193% 0.0100% 0.3293% 0.98631
1893  5.183934  0.4982% 0.0100% 0.5082% 0.97400

@ Given the new shifted curve we reprice the bond.
@ We also consider a downward shift in the curve
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Bond Sensitivity & Hedging Il

Table: Sensitivity is computed as (GBPUp-GBPDown)/2

Shift Gross Bond Price

+1BP 103.158%

0 103.186%
-1BP 103.214%
Sensitivity -0.028%

@ In order to hedge the position we consider a 5 years swap with semi-annual
cash flows on the two legs.

@ The swap is priced in the sheet Swap Pricing and has a Fixed Rate equal to
0.5167%

o Keeping constant the fixed rate, we reprice the swap in the two states (up
and down shift).
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Bond Sensitivity & Hedging Il

@ We obtain the following Table

Table: Repricing the bond and the swap given term structure shifts

| Shift Gross Bond Price  Swap \
+1BP 103.158% 0.0514%
103.186% 0.0000%
—1BP 103.214% -0.0515%

| Sensitivity -0.0282% 0.0515% |
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Bond Sensitivity & Hedging IV

@ Therefore, if we aim to hedge our portfolio we can add a number n of swaps,
so that

7(t) = GBP(t) + nSwap(t)
where, by construction, Swap(t) = 0.

@ However the sensitivity is
Amn(t) = (—0.0282%) + n x (0.0515%).
@ So in order to hedge our portfolio, we need a number 7 of swpas

—0.0282%

00202 5473,
0.0515% 00473

ﬁ:
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Pricing a defaultable bond
@ We have assumed that the issuer does not bear any default risk.
o We need to correct the market value for early default.

o We can use the general formula for pricing a risky note:

ZQ (t, ;) x P(t,T;) X ar._,.7, x B (CF(T;)) x N

expected coupon payment if survives up to T;

+ Q(t, To) x P(t, Tn) x N

notional payment if survives up to T,

+/vxin(o(t,ﬂfl)—o(tm))xP(t,T,-)7 (1)

i=1

prob. of default in (T,-_l,T,-]

where CF(T;) is the random annual coupon due at time T; and
at,_,, 1, X E: (CF(T;)) is the so called forward expected cash flow.
e In our case the forward premium is related to

ar,_,, 7 X (0.6% + FwdCapletPremium)

where Fwd Caplet Premium is estimated using the Bachelier model.
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The Risky Component |

Table: Computing the Risky value of the bond

Risky Valuation

Survival Probability =~ Recovery ~ CF on Survival PV(CF) On survival ~ CF on Default PV on Default

\

\

\

90.320% 40% 0.604% 0.605% 0.272% 0.272%

95.978% 40% 0.584% 0.586% 1.337% 1.341%
92.802% 40% 0.665% 0.666% 1.270% 1.272%
89.722% 40% 0.888% 0.885% 1.232% 1.227%
86.767% 40% 1.128% 1.113% 1.182% 1.166%
83.908% 40% 1.314% 1.280% 1.144% 1.115%
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The Risky Component I

Table: Computing the Bond CVA

Risky Adjusted Valuation

PV
Coupons on Survival | 5.1357%
Notional on Survival | 81.7727%

CF on Default 6.3945%
| CVA 9.8856% |
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0.018
0.016
0.014
0.012

0.01

0.006
0.004
0.002

Expected Cash Flows

0.0000 0.1836 1.1836 21843 3.1896 41867 5.1839
Time to Maturity (years)

EFiked MExp. Coupon MCFonSurvival B CF on Default

o>



What next?

@ The reference rate of the corporate bond is a 1yr LIBOR rate.
e Euro market quotations are relative to the 6m LIBOR rate.
o We should transform this volatility into the lyr volatility.
o ldeas?
@ We have considered how to hedge against parallel shift
o How to deal with non-parallel shifts?
o ldeas?
@ How do you hedge against deterioration in the credit risk of the issuer?

o ldeas?
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Main References:

Useful Readings

@ Brigo Damiano and Fabio Mercurio, Interest Rate Models: Theory and
Practice, Springer Finance 2001.

@ Pietro Veronesi. Fixed Income Securities. Chapter 20.

@ Bruce Tuckman, Angel Serrat. Fixed Income Securities: Tools for Today's
Markets, 3rd Edition Chapter 18.

@ Interest rate derivatives in the negative-rate environment Pricing with a shift,
Deloitte, Feb 2016.

@ Options valuation strained by quantitative easing, Sungard.
Excel Files
o Fl_BlackModel&co.xlsm
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Outline

@ Swaption Payoff

© The surface of swaption implied volatilities

© Displaced Black for swaptions

@ The Bachelier Formula for swaptions
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Swaption Payoff

@ A European payer (receiver) swaption is an option giving the right (and no
obligation) to enter a payer (receiver) IRS at the swaption maturity (a payer
IRS pays a fixed rate and receive a floating rate).

@ The payer swaption payoff at time T is
Pawer SWafHiEN CALL
N x [S(T, TO,T)—K]+><ZaT T X P(T, Ty,
i=1

where

P(T,To)— P(T,T,)

Zan—l,Ti X P(Tv Tl)

i=1

5(T7 T07 Tn) —

@ The receiver swaption payoff is

Nx[K—-S(T,To, T, xZaT LT X P(T,T)).
i=1

@ For pricing these swaptions, we need a model for the forward swap rate.
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The Black model for swaption

Black formula for swaptions

If the forward swap rate has dynamics under the pricing measure given by

dS (t, To, Ta) = 0sS (t, To, T,) dWP™"8(¢), t < To,

- Sikesn
the values at date t of payer and receiver swaptions are

payer(t) Za, 1LiP(t, ;) x (S(t, To, Tp) x N (dh) — K x N (da)) x N

Fwh  Prehanm

rec.(t) Za,l, X (K x N (—da) — S (t, To, Tp) X N (—dy)) x

where:
in (S7T) £ 102 (T - 1)
di2

2 osvV/T —t ’

and o is the percentage volatility of the forward swap rate.

N,
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Example (Pricing a swaption)

We have a 2x1 swaption. The swap is spot starting with semi-annual payments
and the reference rate is the 6m Libor rate. The strike is 10%. The percentage
volatility of the relevant forward swap rate is 20%. The term structure of discount

factors is given in the following Table

Term 0.5 1 1.5 2 2.5 3
DF 099 0.98 0.95 0.9045 0.8825 0.7866
Price the swaption. (o) = 0.90d5 - 0-754¢
OGX(06626401564)
[ J | | %Wﬂf‘ﬁcm V@&L& B
0 2y a5y %Y :(QQ/V/D//)_ 0.14//0/0)
< gl f Anmpits,
GAiopaon Gwop ~ppor
-tonor
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Example (2. Determining the swap payment dates)

@ The swaption expires in 2 years.

@ |t gives the right to enter into a spot starting swap with 1 year tenor and
semi-annual payments.

@ The relevant payment dates of the swap are shown in the following scheme

Term 0.5 1 1.5 2 2.5 3

DF 099 098 0.95 0.9045 0.8825 0.7866
Reset 1st Reset 2nd Reset

Payments 1st Payment 2nd Payment
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Example (3. Applying the Black formula)

@ Given the payment dates of the underlying swap, we can compute the forward
swap rate. It is given by

0.9045 — 0.7866 0.1182
2,3) = = = 14.16%.
50,2,3) (25— 2) x 0.8825 + (3 — 2.5) x 0.7866 _ 0.8346 6%

@ The Annuity appears in the denominator of the forward swap rate and equals
0.8346.
@ The fixed swap rate (swaption strike) is 10%.
@ In addition n (w) R
dp = 0.1 2 =1.3723,
0.22 x 2

d» = d; — 0.2 x V2 = 1.0894.

@ Therefore

swptn(0) = 0.8346 x (14.16%A/(1.3723) — 10%A/(1. 0894))> 0.0362.

DL

o) - Py ="y ZF (T, 1) S T T

Aﬂﬂ/tﬁ - Z oL’
=1
ot 1 P/ TE) sMM260 827
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Inconsistency of the Black formula for caplets and
swaptions |

@ In pricing cap with the Black formula, we assume that forward interest rates
F (T; T;, Tit1) are lognormally distributed.

@ In pricing swaptions, the Black model assumes that swap rate S (T, Ty, T,,) is
lognormally distributed.

@ But we have seen that S(T, Ty, T,) is a weighted average of simple forward

rates: "
S(T, To, Ta)=> wiaF (T, Tiiq, Ty)
i=1
with weights:
P(T,Ti) o1,
Wi—1= — .
(T, Ti) vy,

i=1
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Inconsistency of the Black formula for caplets and
swaptions |l

o If we assume that F (T, T;_1, T;) are lognormal, we cannot assume that
S(t, To, Ts) is lognormal as well: indeed, the sum of lognormals is not
lognormal.

@ So the two models for pricing caps and swaptions are logically inconsistent.

@ Nevertheless the financial markets price both caps and swaptions using Black
models.

@ This incompatibility is mostly theoretical: in practice the distribution of the
forward swap rate is almost lognormal.
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The surface of swaption implied
volatilities
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Implied volatility matrix for swaption

@ As the market quote flat volatilities for caps, in a similar manner swaption
prices are usually quoted as the volatility os.

@ So the market quotes a volatility for a given time to maturity of the swaption,
T — t, and for a given tenor of the underlying (spot starting) swap, T, — T.
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Market quotations of swaption implied volatilities

for explanation. OL1E Equity SWYV
Enter 1 <Go> to save setting
Euro Volatility
Swaption Implied
B (Bid/fsk/Mid) Page 2/3

2 yr 3 ur 4 ur 1 ur
28,34 33.30 31..50 28,22 b, ) 19107
30.05 31.07 29.06 26,76 25, «5h 18.22
;AT 30.14 27.60 255G 2 +19 1731

2d g il 24.36 22,30 20, i

24,92 22.49 20.36 18.88 17.64 .98
21.00 19.30 17.46 16,70 158 .43
| 755 16.41 15.57 14.78 14.0 +33
15.80 14.92 14.19 13:+15 12, <54
13.40 12.80 C  12.40 1200 11, .60

12.00 11.50 11.20 11.00 10, b

Sourcet CHEM  B:08 <Menu> to select another cocy
1 <Go* to save Bid/AsksMid

2 <Gor to modify sources
Australia €1 2 3777 8600 Brozil S511 3048 4500 Europe 44 20 7330 7500 Germony 43 63 320410
Hong Kong 852 2977 6000 Jupan 81 3 3201 8900 Singupore 65 6212 1000 U.S. 1 212 318 2000 Cupgrlght 2003 Bloomberg L. P
-742-0 28-Feb-03 58:
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Market quotations of swaption implied volatilities

for explanation. OL1E Equity SWYV

Euro Volatility
Swaption Implied
B (Bid/Ask/Mid) Page 3/3

10 12 yr 15 yr 20 30 ur
23.10 19.07 16,70 ih . 14.60
21.51 1B. 16,10 15 : 14.10
20.08 1 15.40 14 ; 13.60

18.26 1o 14,50 13.60 .20 .00

16.05 14, 135 12.6 : .20
14,43 1.3: 12,70 12,10 .80 .70
14.39 12, 12,10 11,60 .40 30
12.54 12. 11.50 11.10 11.00 .90
11.60 11: . 10,70 10.40 .40 .40

10.75 10. 10,20 10,00 90 & .00

Sourcet CHEM  B:08 <Menu> to select another cocy
1 <Go* to save Bid/AsksMid
2 <Gor to modify sources
Australia €1 2 3777 8600 Brozil S511 3048 4500 Europe 44 20 7330 7500 Germony 43 63 320410

Hong Kong 852 2977 6000 Jopan 81 3 3201 8200 Singopore 65 6212 1000 .S, 1 21z 318 2000 Cupgr’lght 2003 Bloomber’g £ P
—742-0 28-Feb-03 58:
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Displaced Black for swaptions
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Displaced Black formula for swaptions

If the forward swap rate has dynamics under the pricing measure given by
dS(t, To, Tn) = 05 (S(t, To, Tp) + 6) dWPTre(t) t < Ty
the values at date t of payer and receiver swaption are
payer(t) =

zn:Oé,',l,,'P(t, T,) X ((5(1.', To, T,,) -+ (5) X N(dl) — (K aF (5) X N(d2)) X N,

receiver(t) =

=

Za, LiP (6, T3) % (K +8) x N (—=da) — (S (t, To, Ta) +8) x N (—dy)) x

where:
S(t,T,T)+6
In (2Rl ) 4 102 (T - 1)
dip =

< osVT —t ’

and o is the percentage volatility of the forward swap rate.
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Question

Price a two year swaption to enter into a new 1 yr swap (spot starting) with
semi-annual payments: T = 2 (option maturity), T; = 2.5 (first swap date),

T, = 3 (second swap date). The swaption strike is 0. The volatility is 20%. The
following Table provides information on the discount factors.

| Maturity Rate (c.c.) P(t,T;) |

T 2.00 -0.05% 1.0010
T 2.50 -0.01% 1.0003
T 3.00 0.02% 0.9994
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Example (Pricing a swaption with the displaced Black Model)

Table: Market Rates

| Maturity Rate (c.c.) P(t,T;) |

T 2.00 -0.05% 1.0010
T 2.50 -0.01% 1.0003
T 3.00 0.02% 0.9994

Table: Pricing the swaption

A= 0.5+« (| 0003+ 0"/4414)

_ K 0.00% | - g
= £.9999 < . 09998~

| o0 |- 0.99 %4 & 20.00% | (0 1602yl )
= 5 1.00%

0. |
07;/?—”?% kﬁ Annuity 0.9998 Ald.) 7

oé:@t( > = )ia d;gg,thn) 0.160% | = 0 002)
| 0/‘/’]/ J—(d1}XL 0.6663

D d 0.3835

| Swaption  0.0022 |
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The Bachelier Formula for
swaptions
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Bachelier formula for swaptions

If the forward swap rate has dynamics under the pricing measure given by

dS(t, To, Ty) = Udep’iCi"g(t), t< T g )% ~ct
S) giren Mﬂ%

the values at date t of payer and receiver swaption are
payer(t) =
n
S @i iP (6, T) % ((S (8 To, To) = K)N (dh) + VV(E TIn(ch))
;;cleiver(t) =

Zai—l,iP(ta 7—1) X ((K - S(ty T07 Tn))N(idl) + V(t7 T)n(dl)) )
i=1

where V(t, T) = 0% x (T — t), and:

S(t, To, Tn) — K

1 X
N N ()= E/m

and o is the normal volatility of the forward swap rate.
Pricing of Swaptions SMM269  20/27

2
_Zdz n(x) = —e 7,

d = \ﬁ



Heqing


Example (Pricing a swaption using Bachelier formula)
We have to price a 6mx6bm swaption. The swap has quarterly payments
@ The 6m, 9m and 12m LIBOR rates are -0.32057% -0.21214% -0.08329%.
@ Corresponding discount factors are 1.00161, 1.00159 and 1.00083.
@ The swaption strike is 0%.
@ The (constant) absolute volatility is 2.50%.
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Example ((...) Pricing a swaption using Bachelier formula)
Therefore
@ The swaption expires in 6 months.

@ The swap resets in 6m and 9m and pays in 9m and 12m.

Time 0 0.5 0.75 1
DF 1.00161 1.00159 1.00083
Reset

Payment

@ The forward swap rate is

~ 1.00161 —1.00083  0.00077
~0.25(1.00159 + 1.00083)  0.5006

= 0.1542%.

@ In addition

0.1542% — 0
dy = —2ME0 2 00872, N(dy) = 0.5348, n(dy) = 0.3974.
' 0.025 x V0.5 (c) (c1)

@ Therefore the swaption price is

o X o (e x 0. =+ 0 X 9 X 0. = 0. °
0.5006 0.15421% — 0) x 0.5348 + 0.025 x V0.5 x 0.3974 0.0039
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Homework

he

o Let us suppose to have a flat LIBOR term structure at 0.5%.

@ Price a 3x2 swaption on the 3m LIBOR (payments are quarterly) given that
the strike price is 0.25% and the percentage volatility of the forward swap
rate is at 20%.

@ Price a 3x2 swaption, using the Bachelier model, on the 3m LIBOR
(payments are quarterly) given that the strike price is 0.25% and the absolute
volatility of the forward swap rate is at 100 bp.

@ Price a 3x2 swaption, using the displaced Black model, on the 3m LIBOR
(payments are quarterly) given that the strike price is -1% and the percentage
volatility of the forward swap rate is at 20% and the shift coefficient is -1%.
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Conclusions

We have presented
@ The swaption payoff
@ The most popular pricing models

e Black
o Displaced Black
o Bachelier
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Swaption volatilities and forward rate volatilities

@ The relationship between forward rates and forward swap rate allow us to find
absolute swaption volatilities from absolute forward rate volatilities.

@ Indeed, freezing the terms w;, we have:

Var(S) = Var <Zn: wi—1F (T, Ti1, T,))

i=1

n
_ . ) 2
= Wi—1Wj—10;_1 ;1

ij=1
where ‘7:'2,1' is the covariance between F (T, Tij_1, T;) and F (T, Tj_1, T;):

021y = Cov (F(T, Try, T F (T, Ty1, ).
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Swaption volatilities and forward rate volatilities (ctd)

@ In practice, this approach is adequate to provide an indication where the
swaption volatility should be, but the swaption market has its own
characteristics as distinct from the cap market.

@ Relying on this relationship for pricing, and more for risk management, would
introduce considerable basis risk.
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@ Numeraire and Martingale
@ Binomial Model
@ Problems with the m.m.a.

© Forward measure

@ Forward measure: Applications
@ Forward contract on a zcb
@ LIBOR in advance
@ Pricing caplets
@ The Gaussian martingale model
@ The Shifted Black Model
@ Option on a coupon bond

@ Forward measure and Expectation Theory

@ Forward measure and stock options

@ Forward rate dynamics under the same measure
© Swap measure

0 Spot measure and exchange options
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Numeraire and Martingale
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Pricing problem

@ We have to price an instrument with cash-flow

o for a zch:
c(T)=1,

for a caplet:
C(T2) = (F(Tl, Tl, Tz) — K)Jr X 0Ty, Ty

o for a swaption:

c(T)=(S(T,To, T) xZaT, LTP(T,T).

i=1

for a bond option:

(Zc, LT P(T, T) — K>.

e and much more: stock options when rates are stochastic, exchange options,
etc.

@ The pricing problem can be solved introducing the concept of numeraire and
martingale process. el (e
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Important concepts

In the following, we will use
@ Numeraire asset;
@ Relative Price;
@ Martingale process;
@ No-Arbitrage.

B @ e N SHANZ697 6 /14D



Numeraire Asset

Fact (Numeraire)

@ A numeraire is a particular asset that can be used to price relative to.
Numeraire means a unit of measurement.

@ A numeraire must have strictly positive value and must be self-financing.

@ Examples of numeraire are:

o the money market account;
e a non dividend paying asset;
@ a zcb maturing at a suitable date;
e a constant maturity coupon bond.

| |
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Relative Price

Fact (Relative Price)

@ The ratio of one price to another is the value of the first (numerator) asset
when we are using the second (denominator) asset as the numeraire.

@ If num(t) is the value at time t of the numeraire, then for an asset with value
v(t) its value relative RP(t) to the numeraire is:

RP(t) = %

PR |
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Martingale

Martingale

A stochastic process (X(t)),~q is a martingale with respect to a measure Q and a
filtration F; if its expected future value equals its current value

E¢ (X(T)) = EX(X(T)|F:) = X(1),¥T > ¢,

where E(t@ is the t-conditional expectation with respect to the probability measure

Q.

In the following, we will use the shorthand notation

EZ (X(T))

to denote conditional expectations.
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Example

@ Consider a random process X that lives one period, starts at 100 and dies in

80 or 120.

@ We can associate to it different probability measures, P =(0.4;0.6)and

Q =(0.5;0.5) say.

@ X is a martingale wrt Q and not wrt P :

Not a Martingale Process
P
120 0.4

/

pN
80 0.6

100 # 0.4 x 120 + 0.6 x 80

100

A Martingale Process

Q
120 0.5
/
100
pN
80 0.5

100 = 0.5 x 120+ 0.5 x 80

@ In the example Q is a probability measure that is equivalent to P (i.e. for any

set Ac F, Q(A) =0 if and only if P(A) = 0).

©Gianluca Fusai (Cass )
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Example

@ Two equivalent measures and two not-equivalent measures.

Equivalent Measures P ~ Q
P Q
120 0.4 120 0.3
/ /
100 100
N\ N\
80 0.6 80 0.7
Not Equivalent Measures P » Q
P Q
120 | 0.4 130 | 0.3
100 100
N\ N\
80 0.6 80 0.7
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Fundamental Theorem of Asset Pricing:
Relative prices are Martingales

Problem: How to use a numeraire for pricing? ]

Main result (Harrison and Kreps)

If there are no arbitrage opportunities, then relative prices are martingales under
risk-adjusted probabilities, i.e., given a numeraire num; there exists a probability
measure Q such that the ratio of any other asset price v; to the numeraire is a

martingale, i.e. forall t < T
W) _ go(_vT)
num(t) "\ num(T) /)"

or equivalently v(t) = num(t) x E2 (n:,(npr)) . To emphasize that the numeraire

can be any non-dividend-paying asset, we can write the no-arbitrage formula in

the form:
v(t) = num(t) x E; (%) :
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Remarks

@ Different numeraires lead to different probability measures and hence to
different expectations.

@ The absence of arbitrage does not depend on the choice of the probability
measure an on the choice of the numeraire.

@ If we change probability measure (and numeraire) the no-arbitrage condition
must still be satisfied.
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Change of numeraire and change of measure |

Consider the payoff G(T). We can price it using different numeraire and different
probability measures.

o Let QV be the equivalent martingale measure with respect to the numeraire
N (t). Therefore
G(T)
= N(EY | —=2]. 1

@ Let us consider a new numeraire M(t). How do we find the corresponding
probability measure?

@ We re-arrange 1 and we write

()

et = e [ 40 MO0 6

N(T) M(t) M(T)

PR |
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Change of numeraire and change of measure ||

@ Let us define the so-called Radon-Nikodym derivative

o) = J )

@ Given that an expectation is an integral, formula (2) amounts to write

G(t) == M(t)

G(TYM(T) (D)
M(T)N( 7 M(n (7

/ T)dQY(T)

@ Let us define

dQ" = y(T)dQ"(T).

PR |
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Change of numeraire and change of measure Il|

@ We observe that dQM is a probability measure:
a. it is positive (product of positive quantities)

b. it integrates to 1

where we have exploited the fact that M(T)/N(T) is a martingale if N is the
numeraire. s

PR |
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Change of numeraire and change of measure IV

@ Therefore (??) becomes

© [ e (DaRt(n)
© [ )"

= M(t)EY [/\/I((P)] :

The Change of Numeraire
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Take Away 1

Q Given a payoff G(T), we can determine its price selecting a numeraire N(t)
and a corresponding probability measure dQ. Therefore

G(t) = N(t)EN /C\;/E;:ﬂ .

© However, the price of the payoff does not change if we change numeraire and
probability measure

G(t) = M(t)EM /\Cjz((?)] .

© We can move from the probability measure dQV to the dQM (and viceversa)
using the Radon-Nykodym

4o _ M(T) () "

~dQV  N(T) M(t)’

P(T)

and then
dQM = (T)dQN(T),

N __ 1 M N
40" = Q7).
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Take Away 2

How do we use these results?
@ Depending on the payoff, sometimes it is useful to price using the numeraire
N (and dQV) and sometimes using the numeraire M (and dQM).
o It will be a question of convenient choice of the numeraire.
© Sometimes, we have a model specified under the probability measure dQV
and we need to rewrite the model under the new the probability measure
dQM.
o We will change probability measure (and we change numeraire) by using the
Radon-Nykodim derivative.
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Take Away 3: Risk Neutral Measure & MMA

@ The money market account (MMA) gives us the T bank account value
given that we have posted B(t) at time t

-
B(T) = B(t) x exp (/t r(s)ds) ,

and r(s) is the instantaneous return on the bank account.

@ B(t) can be considered a numeraire asset: it is traded and it has positive
value.

o If we take the MMA as numeraire, the corresponding probability martingale
measure is called "risk neutral” (RN) and we use the notation E,(.) to
denote conditional expectation under this measure.
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Take Away 4: Pricing using the Risk Neutral
Measure & MMA

Derivatives with payoff v(T) can be priced using the MMA and the RN measure

according to - -
v(t - v(T
5 =& (5m)

and then we get the familiar pricing formula

_"L—Nex—Trssv .
v(t) = &, exp(ftTr(s)ds) —Et< p( /t ()d> (T)>

@ The formula above suggests the statement the derivative price is the
expected value, using the RN measure, of the discounted payoff.
@ Moreover, if interest rates are constant B(T) = B(t)e"(" %) and

v(t) = e ™<T=9E, (v(T)).

@ But pricing is more general than computing discounted expectations under
the RN measure. Using a different numeraire the pricing formula will be
different.
The Change of Numeraire SMM269  21/149



Example
Pricing a zero-coupon bond using
the risk neutral measure
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Example (1. ZCB pricing using the RN measure)

@ Let us consider a pure discount bond, whose payoff is: v(T) = 1.
@ Let us use the money market account as numeraire.

@ The current price P(t, T) of the zcb is therefore:

P(t, T)=KE, <exp (— /T r(s)ds) X 1) .

@ This is the approach used in short rate models, where a risk-neutral dynamics
is assigned to the short rate

dr(t) = p(r, t)dt + o(r, t)dW(t).

@ Then the zcb price can be found if we know the moment generating function
(MGF) of the time integral

I(t, T) = /tTr(s)ds,

i.e. if we are able to compute K, (exp (—/(t, T))).
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Example ((...ctd) Pricing zcb using the RN measure)

@ The procedure gives closed form expression for zcb prices depending on the
choice of the drift and diffusion coefficient.

Table: Legend: HW: Hull & White, CIR: Cox-Ingersoll-Ross, MR-LN:
mean-reverting lognormal.

Model Drift Diffusion Distr of r(s)  Distr of I(t, T) MGF of I(t,
Merton m o Gaussian Gaussian

Ho & Lee u(t) o Gaussian Gaussian

Vasicek a(p—r(t)) o Gaussian Gaussian

HW a(p(t) —r(t) o Gaussian Gaussian

CIR a(p— r(t)) a+/r(t)  Non-Cent. x? Unknown

Dothan wr(t) o X r(t) Lognormal Unknown X
MR-LN a(p— r(t)) o x r(t) Unknown Unknown X

@ The above Table shows that only for some model (Merton, HL, Vasicek, HW
and CIR) the zcb price is available in closed form. Therefore, their popularity
at least in the academic literature.
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Example ((...ctd) Zcb pricing using the Merton model)

@ The sde B
dr(t) = pdt + odW(s).

@ The model .
r(s) = r(t) + p(s — t) + o [7 dW(u) ~ N (r(t) + u(s — t),0%(s — t))

@ Integrate

/tTr(s)ds— H(e)(T — r)+u@ —l—a/tT/tstT/(u)ds

@ Therefore f r(s)ds ~ N (M(t, T), V(t, T)), where

(T —1t)? 2

M(t,T) = r(O)(T = £) + u-— ,V(t,T):+%(T—t)3,

@ It follows that
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Example 2:
Pricing a cash-or-nothing option
using the risk neutral measure
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Example (2. Pricing a cash-or-nothing option)

@ A cash or nothing pays 1s(7)>k-
@ Let us use the risk-neutral measure and the money-market account.

@ The option price is:

v (t) = B(t) x &, (1555(7);)“)

@ If interest rates are deterministic, i.e. B (t) is not-stochastic, then
B(t n — [T r(s)dsTs
v(t) = B((T)) x Ee (Is(rysk) = e I O%E, (1s(r)5x) ,
@ We observe that:

IEt (1S(T)>K) = PN"t(S(T) > K)v

i.e. the price of the cash-or-nothing is related to the exercise probability
under the risk-neutral measure.

Remark: the term A/(d>) in the Black-Scholes pricing formula is related to
the exercise probability under the risk-neutral measure.
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Example (3. Pricing an asset-or-nothing option)

@ An asset or nothing option pays S (T)1g(7)>k-

@ Given an appropriate numeraire, the option price is:

S(T) 1S(T)>K>

v (t) = num (t) E]“™ < num (T)

@ What is a numeraire that can simplify the computation?
@ Let us choose as num(t) = S(t), and therefore

(6) = 5(0) x B (LA — S(0BE (150r150)

and we observe that:
E? (1s(r)>k) = Pri (S(T) > K),

i.e. the option price is related to the exercise probability under the
"spot”-measure.

@ Remark: the term N (d;) in the Black-Scholes model represents the exercise
probability when the stock is taken as numeraire.
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Example (4. Pricing a call option)
@ A call option pays

(S(T) = K)" =S(T) x Lls(rysk — K X Ls(T)>k-

@ The above payoff can be obtained as difference between:
o a long asset-or-nothing and
e short K cash-or-nothing options.

@ Therefore the option price, assuming deterministic interest rates, is given by

c(t)=S(t)x Pry (S(T) > K) —

x K x Pry(S(T) > K).

Problem (Question)

@ How to compute the probability of exercise using the two different
numeraires?

@ We examine now how to find them in the discrete time binomial model.

@ Then we examine the Black-Scholes continuous time model.
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Example 3:
Binomial model and change of
numeraire
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Binomial model

Stock Price Dynamics
t t+dt prob.
Su p
/
S
¢
Sd 1-p
Bank Account Dynamics
t t+dt prob.
Berdt p
/!
B
Be'dt 1—p

PR |
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Bank Account as Numeraire |

t

olloy

Relative Stock dynamics
t t+dt prob.
Su

Berdt p
e
S
B
\ Sd
Bedt 1P
Relative Bank Account dynamics
t+ dt prob.
rdt
B p
e
\‘ dt
B 1-p
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Bank Account as Numeraire 1l

Fact (Probability Measure associated to the Numeraire Bank Account)

® Martingale restriction: 2 is a martingale, i.e. if the following restriction is

B
satisfied
S Su Sd

B = pBerdt + (1 B p) Berdt

@ Solving wrt p we obtain the famous Risk-Neutral probability

erdt —d

o= u—d

o Notice that p is a probability if and only if

d< e < u,

i.e. there are no arbitrage opportunities between stock and bond.
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Asset as numeraire |

Relative Stock dynamics

t t+dt prob.
Su __
Su q
S _
=1

Sd __

t t+dt prob.
Brdt
S d
/(
B
S
\( di
Bft
sa 1—4
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Asset as numeraire |l

Fact (Probability Measure associated to the Numeraire Stock)

@ Martingale restriction: g is a martingale if the following restriction is satisfied

B Berdt Berdt
1—q) ——
+(1-q) <

s 95y

and then we obtain the so called SPOT probability measure

1— de—rdt 3 erdt —d B
Uu=e rdtu rdt

g = € up.
¢ u—d u—d .

@ Notice that
e g is a probability iff
d< e <u,

i.e. again if there are no arbitrage opportunities between stock and bond.
e q Is equivalent to p.
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Change of numeraire and R-N derivative

@ Recall that in order to move from one probability measure p to the new one
p we can use the Radon-Nykodym

~
~

W= oo )

@ In the up state,

wipy_ dt)u B(t) u
PP ( )—Wﬁ—em

so that the probability of the up state is
u
q=px¥P(T)=px 5,

as we just obtained.

@ In the down state
down _ S(t)d B(t) _ d
Y (T) = B(t)erdt%_ erdt

and then the probability of the down state is
down d
1—-g=(1-p)xy™(T)=(1-p) % prer
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Example (1. One period binomial model)

@ Let us consider the one-period binomial model with
u=11,d=1/u,r=0.050t =0.55; = 100, K = 100, so that

p = 0.60879
and
q = 0.6531.
@ The option price is
c(t) = S(t)xPri(S(T)>K)—e ™t x K xPr,(S5(T) > K)

= S(t)xg—e ™txKxp
= 100 x 0.6531 — e~ 995%0:5 5 100 x 0.60879
5.9376.

PR |
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Example (2. Multi-period binomial model)

@ Let us price a call option with 2 years to maturity, strike 114 and given the
spot price is at 100 and the volatility is 20%, given that we use a binomial
tree with 10 steps.

@ The up and down factors are
u=e®2V1 =1.06528,d = e *2V1 = 0.93871.
@ The annualised risk-free rate is 5%, and therefore the one period RN is

e005x% ¢ 1.00501 — 0.93871
— = = 2. 9
- u—d 106528 _0.03871 _ 22379%:

@ The one period SPOT measure is

1.06528
= = 52.3799 = 55.521%.
9=PX A %X 10050 e
Prob. Measure Risk-Neutral SPOT
up 52.379% 55.521%
down 47.621% 44.479%
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Example (3. Stock Price distribution under the two measures)

@ Let a be the smallest integer such that the option is exercised

Sufd"? > K,

and we find a = | 21} | +1 = |11.03) +1=12.

@ Let us compute the probability of exercise under the spot measure
a—1 . ) )
PrePot (S(nAt) > K) =1 — Z ( > ¢(1—q)" = 43.285%.
=0
where we have used g = 55.019%, a = 12 and n = 20.
@ Similarly, we have (using p = 50.564%)

a—1

Pr(S(nAt)>K)=1-Y" (n)p’(l — p)" = 32.492%.

Jj=0

@ The option price is therefore

100 x 43.285% — e %:05%2 « 114 x 32.492% = 9.76901.
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Posmoam osm G Ry G oSPOT ) RNy 1-TefN 1-%e

Bi(M i 5i(M
20 354.28 240.28 111 217.41 0.00% 0.68 0.00% 321 0.00% 0.00% 0.009
19 312.18 198.18 111 179.32 0.00% 0.63 0.01% 2.82 0.01% 0.00% 0.019
18 275.09 161.09 111 145.76 0.04% 0.59 0.09% 2.49 0.09% 0.04% 0.119
17 242.40 128.40 111 116.19 0.21% 0.53 0.45% 219 0.45% 0.25% 0.56%
16 213.60 99.60 111 90.12 0.80% 0.47 1.55% 1.93 1.55% 1.05% 2.119
15 188.22 74.22 111 67.16 2.33% 0.39 3.96% 170 3.96% 3.38% 6.079
14 165.86 51.86 111 46.92 5.29% 0.31 7.94% 1.50 7.94% 8.67% 14.01
13 146.15 32.15 111 29.09 9.62% 0.22 12.72% 1.32 12.72% 18.28% 26.73
12 128.79 14.79 111 13.38 14.21% 0.11 16.56% 117 16.56% 32.49% 43.29'
11 113.48 0.00 111 0.00 17.22% 0.00 17.69% 1.03 17.69% 49.72% 60.97¢
10 100.00 0.00 111 0.00 17.22% 0.00 15.59% 0.90 15.59% 66.94% 76.56
9 88.12 0.00 111 0.00 14.24% 0.00 11.35% 0.80 11.35% 81.18% 87.91°
8 77.65 0.00 111 0.00 9.71% 0.00 6.82% 0.70 6.82% 90.88% 94.73
7 68.42 0.00 111 0.00 5.43% 0.00 3.36% 0.62 3.36% 96.31% 98.09°
6 60.29 0.00 111 0.00 2.47% 0.00 1.35% 0.55 1.35% 98.78% 99.44°
5 53.13 0.00 111 0.00 0.90% 0.00 0.43% 0.48 0.43% 99.68% 99.87"
4 46.82 0.00 111 0.00 0.26% 0.00 0.11% 0.42 0.11% 99.94% 99.98
3 41.25 0.00 111 0.00 0.05% 0.00 0.02% 0.37 0.02% 99.99% 100.00
2 36.35 0.00 111 0.00 0.01% 0.00 0.00% 0.33 0.00% 100.00% 100.00
1 32.03 0.00 111 0.00 0.00% 0.00 0.00% 0.29 0.00% 100.00% 100.00
0 28.23 0.00 111 0.00 0.00% 0.00 0.00% 0.26 0.00% 100.00% 100.00

Table: Pricing an option using different measures

© 14.65497 =1 x 370, FH3 QRV

@ 14.65497 = 100 x Y20, S QFFOT

© 14.65497 = 100 x (1 — 0.4080) — 5kt5 x (1 — 0.5681).
@ Radon-Nykodyn Derivative ¢;(T) = %%
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— v(t) = N(oEY [$]
L iy = M(t)EY l\‘;((-l';')) %((TT)’EEQ}
= M(e)EY | (7))
= MOEY [77)]

Figure: Distribution of the stock price using different numeraires and the Radon-Nykodin
derivative ¢(T) that allows us to move from the RN measure to the SPOT measure.
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Question

@ Consider a two-periods binomial model where S; = 100, By =1,
u=11=1/d and r = 0.05 (one step=1 yr).
@ Consider an at-the-money call option. Construct its dynamics given that:

@ a) the asset is taken as numeraire,
e b) the money account is the numeraire.

@ What is the price of the call option in the two cases. Why?

©Gianluca Fusai (Cass ) The Change of Numeraire SMM269 42 /149



Change of numeraire and SDE
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How does the change of numeraire work in
continuous time? |

The change of numeraire is equivalent to a change of measure that can be
performed by using the Radon-Nykodin derivative.

@ Moreover, if we work with sde, the Girsanov theorem tells that if we are able
to write the RN as an exponential martingale we can change measure via a
change of drift in the sde, given technical conditions (see Appendix).

In the following, we use this fact: when we use stochastic differential
equations, if we want to change measure we have to apply a change of drift,
so that the desired quantity is a martingale.

@ We do this without going trough the Radon-Nykdoyn derivative, but we are
aware that its knowledge and the Girsanov theorem makes this procedure
meaningful.

@ We do this in the Black-Scholes setting to move from the risk-neutral to the
spot measure

©Gianluca Fusai (Cass ) The Change of Numeraire SMM269 44 /149



Changing measure in the Black-Scholes model |

Recall the following facts:

Q Let
X ~N(m,v),

then its moment generating function is
E (1) = e,
@ The sde dS = pSdt + 0 SdW admits as solution
S(T) = S(t)el=" /AT =t)+o(W(T)=-W(r)
Q If dB(t) = r(t)B(t)dt, then
B(T) = B(t)el: o),

and if r is constant
B(T) = B(t)e(T71),
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Changing measure in the Black-Scholes model |1

Then, consider the

@ Money market account dynamics
B(T) = B(t)e'T~",
and the stock dynamics under the pricing measure
o2 _ o A W
S(T) = S (1) x e(n=% )TN - W),

@ Here the pricing measure depends on the numeraire.

@ The probability measure associated to the numeraire here is fixed once we
choose the drift u.

PR |
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Changing measure in the Black-Scholes model 11

@ Risk-Neutral Measure: the money market account is the numerarie.

@ Then
S(T)  S(t)eln=o"/AT—)+a(W(T)-W(1)

B(T) ~ B(t)er (T

must be a martingale.

@ This is true if and only if

n=r.
@ Spot Measure: the stock is the numeraire.
@ Therefore

172 S
B(T)  B(t) x (%) (T=0=a(W(M)=-w(0)

S(T) 5(¢)

must be a martingale.

This is true if only if
u:r—i—az. B

g

©Gianluca Fusai (Cass ) The Change of Numeraire SMM269  47/149



Fact (Money market account as numeraire: Risk-neutral measure)

5(t)

B(0) is a martingale and the stock dynamics are

dS(t) = rS(t)dt + oS(t)dW(t),
2

dinS(t) = (r— =) dt + odW(t),
(-%)

S(T) = S(t) x b= ) T—sHa(WT)-W(e)
In(S(T)) ~N ( In(S(t)) + r—”—2 x(T—1t),0?x(T—1t)].
2
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Fact (Stock as numeraire: Spot Measure)
B(t) -

@ sa martingale and the stock dynamics are

dS(t) = (r+a S(t)dt + oSAW>(t),

) S
dinS(t < >dt+ode,

5( ) S(t) ( UT)X(T t)4+o(W3(T)— Ws(t))’
In(S(T)) ~N [ In(S(t)) + r+—2 x (T —t),0?x(T—1t)).
2

w = e d
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Figure: The stock price distribution in the BS model under the Risk-Neutral and the
Spot measures. Parameters: r = 5%, 0 =20%, S =100, T — t = 2.




Application: The Black-Scholes formula

@ Now we price a call option with payoff (S(T) — K)". We assume not-risky
interest rates.

@ Recall that we have:

o - sl
]

= S(E [Lis(r>)] — B(T Ef [Ls(r)>k)

B(t)

= S(t)PrS(S(T) > K) — 57

K Pr. (S(T) > K).

@ Now we have to calculate the probability of exercising the option under the
two measures.

R
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Computation of Pr; (5(T) > K)

@ We know that under the risk-neutral measure
S(T) = S(t) x e(rf";)><(T7t)+o(W(T)7VT/(t))

@ We can now compute

Pre(S(T)> K) =Pr, (S(t) (T ) T=0ta (WM —i(1) K)

T—t VT—t
_, —J\/<Insl(<”_g<;;i)(r_t)>
w2 (T
:N(' £ U\/T%t)(T t’)
. 2
_ In Sf<)+0—r7_"2_t)(Tt))
= N (db).
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Computation of Pr? (S(T) > K)

@ We know that when the stock is taken as numeraire
S(T) = S(t) x e(r+"72)(Tft)+a(W5(T)fW5(t))7
so that we can now compute Pr (S(T) > K) :
Pre (S(T) > K)
=Pr; (S(t ) (r+5 ) (T=0+a (W3 (T)-W*(1) > K>
2

_Prt< (W Ws(t))>ln(%)f(r+%)(7'ft))

( T) Ws(t) S sfq_(r+“22)(T—t)>

— N( Q) (’*f?””)

() S
B @ e N SHNio6O G348



The Black-Scholes formula

@ Collecting terms, we have:

c(t) = SEPS(S(T)>K)— BB((;_))KPrt(S(T)> K)
= SN (@)~ g KN (@)

= S()N(d)—P(t, T)KN (c2).
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Fact (The Black formula)

@ The Black formula is a variant of the Black-Scholes and is obtained when we
consider an option on a forward contract.

@ Let S(t, T) be the forward price. The option price is given by
P(t, T)(S(t, T)N(d1) — KN(dn)),

where

n (21) £ 30%(T - 1)
o/ (T —t)

@ Notice that this formula is assuming that the dynamics of the forward price is

dip =

dS(t, T) = oS(t, T)dW(t),t < T,

i.e. it is a lognormal martingale.

@ In practice, it can be obtained by setting r = 0 in the expressions of d; and
d» and in replacing S(t, T) with S(t)e"("=%) in the Black-Scholes formula.
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Problems with the m.m.a.
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The problem with the m.m.a.

@ In order to use the formula

()= B0)E (er) )

when interest rates are stochastic, we need to know the joint distribution of
v(T) and B(T) = B(t)el: r(9).

@ In general this is not easy. If the two quantities were independent, we could
write:

() = B(0: | g7 | Bl (D] = P (e DB (T,

but this is not true...under the risk neutral measure.

@ Let us try to reformulate the pricing problem using a new numeraire.
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A zcb as numeraire:
The forward measure
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Forward measure |

@ Question: There exists a new numeraire num (t) (and the associated
probability measure), such that the computation of

T
v (t) = num(t) x E7“™ {\/(3_}
is simpler than calculating

B mm | v(T)
v(t) = B(t) x E{ [B(t) eftTr(s)dS‘|

when interest rates are stochastic?



Forward measure |l

@ Intuition: let us set
num(t) = P(¢t, T),
@ P(t, T) is the price of a traded asset and can be taken as numeraire.
o It follows
v(T)
P(T,T)

@ The associated probability measure is called T-forward measure, because the
forward price v (t) /P (t, T) is a martingale, indeed we have:

ieny " [(rm)

v(t)=P(t, T)E™ [

|- p s [40)]

1

@ Now we have to determine the distribution of the payoff under the new
probability measure.

@ Let us consider few examples.



Forward price of a zcb
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Forward measure and forward contract on a zcb |

@ The payoff of a forward contract expiring in T; on a zcb with maturity T5 is
P(Ty, T2)— P(t, Ty, T2),

@ Here the forward price P (t, Ty, T,) is fixed in t and it has to be chosen to
guarantee a zero-initial cost, i.e.

0= num(t) X ]E;l—l <P(T1, T2) - P(t, T17 Tz)) ,

num (Ty)

where num (t) is the chosen numeraire.
@ Therefore P(t, T1, T2) must satifsy

E[ (’m) =EI <numl(T1)) x P(t, T, T»). (6)

@ Let us choose as numeraire the T7-zcb:

num(t) = P(t, Ty) e
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Forward measure and forward contract on a zcb |l

@ We have

P(Tl T2) P(t T2)
R g i SEIE VAN R G R
f (P(Tl,m ”

P(t, T1)’
“F (samcr )

1 1
T1 :ETl _ :1
e (P(Tlle)> ! <1> ’

where the first row exploits the fact that relative prices are martingales.

@ In conclusion, substituting in (6)

P (t, T2)

P(t, Tl, Tg) = P(t Tl),

i.e. the expression we obtained when we discussed the forward price of a
bond using a no-arbitrage argument.

PR |

©Gianluca Fusai (Cass ) The Change of Numeraire SMM269 63 /149



LIBOR in advance
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Forward measure and the most important formula |

@ The payoff to be priced is
12 X L(T17 Tz) x N.

and is paid in Ty, so the natural time-lag between reset and payment date
applies.

e Given that L(Ty, Tp) = F(T1, T1, T2), and using as numeraire the T, — zcb,
we have to compute

F(Ty, T1, T2)

P (6T e (S

) ><a172><N,

where we are using the T, — forward measure.

e e |
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Forward measure and the most important formula Il

@ Observe that
] P(TQ7 Tg) = 1, and
o the simple forward rate is

_ 1 'D(tv Tl)_'D(tv T2)
F(t7 T T2) B ATy, Ty ( 'D(t7 TQ)

and we recognize that, being a ratio of prices, the simple forward rate is a
relative price: The reference asset is exactly the zcb expiring in T, i.e. the
numeraire used for the valuation.
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Forward measure and the most important formula 11l

o It follows:

F(Ty, T1, T,
I(3(7_27_,_2))) X apox N
given that P (T, T2) = 1 we have
= P(t, ) xElR(F(T, T1, o)) x ar,.1, x N
using the expression for the forward rate, we have
1 P(Ty, T1)— P(Ty, T>
= P(t,T,) xE] <aT1,T2 ( ( P()Tl, Tz() ))> X a1, X N
we have to compute the expectation of a relative price,

P(tv TZ) X ELTZ <

therefore by no-arbitrage, we have
= P(t, Tz) X F(t, Tl, T2) X a1, T, X N

PR |
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Forward measure and the most important formula IV

@ FACT: The simple forward rate is a relative price with respect to the
chosen numeraire, and then it is a martingale under the T, forward
measure

El2 (F(T1, Th, T2)) = F(t, T1, To).

@ The result is independent on the distribution of the simple forward rate:
indeed, we also obtained it by a no-arbitrage argument (the most important
formula).

@ Whatever the dynamics of the simple forward rate, if we are using the T,
measure, it must be guaranteed that it is martingale.

@ If we are using a SDE, this is equivalent to require that the drift is zero!

Black dF(t, T1, T2) = 0dt + Ub/ackF(t: T1, T2)dWT2(t), t<T
Bachelier dF (t, Ty, T2) = 0dt + 0pachdW T2(t), t< Ty
Shifted Black dF(t, T1, T2) = 0dt + ospin(F(t, T1, T2) + 8)dWT2(t), t< T
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Pricing caplets

R
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Forward measure and pricing caplets |

@ The caplet payoff in T;;q is
(Tiv1) = (F(Ti, Tiy Tina) = K) a7y
@ Let us choose as numeraire the T;y1-zcb
num (t) = P(t, Tis1),
@ We have to compute

(F(T:, T3, Tiza) — K)*

c(t)=P(t, Tit1)E/™ P(Tirt, Trd)

@ Therefore (notice that P(T;41, Tiy1) = 1)

c(£) = P(t, Tua) B[ [(F (T3, Tiy Tiaa) = K)'|

©Gianluca Fusai (Cass ) The Change of Numeraire
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Drift restriction and Volatility coefficient

We aim to compute
B[ (F(Ti T Tipn) — K)©

Notice that

o the forward rate F(t) = F(t, T;, T;11) must be a martingale under the T;
probability measure;

@ the martingale restriction is equivalent to have zero drift in the sde dynamics;
@ no restriction is imposed on the volatility coefficient.
@ Therefore, several models are admissible for F(t).

@ The most common are

Model | Dynamics
Bachelier dF(t) = o x dW T+ (t), t < T;
Black dF(t) = o x F(t) x dW (), t < T;

Displaced Black | dF(t) = o x (F(t) +d) x dW T+ (¢t),t < T;
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Forward Measure and the Black
martingale model
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The Black formula for pricing caplets

© Payoff in Tiy1is ¢(Tiv1) = (F(Ti, Tiy Tipa) — K) ' ar 7is-
@ Use as numeraire the T;y; zcb, i.e P(t, T;+1), and compute

c(t) = P(t, Tu) B/ ((F(T, T3, Tia) = K) ) arrse (7)
© Beyond being a martingale, we freely assume that F (¢, T;, T;11) is lognormal
F(Ti, Tiy Toa) = F(8, Ty, Teyn)e™ T T oW T-wia)

or equivalently dF(t, T;, Tiv1) = oF(t, T;, Tiv1)dW T (t).
@ Computing the expectation in (7), we get the Black formula for caplets

P(t, Tiza) (F(t, Ti, Tisn)N(dy) — KN(d2)) o, 7.0,

where .
In (F(t,T;(,THrl)) + 0'7(7" _ t)
dio =
a/(T; —t)
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Question

Using the Black model show that
@ The price of the LIBOR in advance is

P(t7 T2) X F(tv Tla TQ) X AT, T,
© The price of the LIBOR in arrears is
P(t, Tz) X F(t, Ty, T2) e % 0 e TA(Z’7 Ty, TQ),

where the timing adjustment TA(t, Ty, T2) is given by

TA(t, Ty, To) = P(t, L)E[ (F3(T1, T1, T2)) o2, 7, (8)
= P(t,T2) x F2(t, Th, T2) x o 1, x e (170 (9)

© Under the T, measure, the probability of exercising a caplet expiring in T; is

N(d).
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Forward Measure and the Gaussian
(Bachelier) martingale model
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The Gaussian martingale model |

@ In the last few years, we have seen the appearance of negative rates, so that
the Lognormal assumption has been released.

@ A possible approach is model the simple forward rate under the T, forward
measure according to an Arithmetic Brownian Motion (Bachelier model)

without drift
dF(t, Ty, To) = o(t)dW 2 (t),t < Ti.

@ In practice, we assume that

F(s, T1, To) = F(t, Ty, To) + /tsa(s)dWT2(s)

F(S, Ty, Tz) NN(F(t, T1, Tg), V(t,s))7

where

S
V(t,s) = / o2(u)du.
t
and if the diffusion coefficient is constant, V/(t,s) = 02(s — t). e
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The Gaussian martingale model Il

Question
@ Using this model show that
@ The price of the LIBOR in advance is

P(t7 T2) X F(t> T17 T2) X Ty, Ty-
© The price of the LIBOR in arrears is
P(t, T2) X F(t, Tl, Tz) X a1y, T, + TA(t, Tl, Tz),

where the timing adjustment TA(t, Ty, T2) is given by

TA(t, T1, T>) P(t, T,)El (F2 (Th, Th, T2)) o3 1, (10)

P(t, T2) (F(£, T, T2) + V(£ T0)) x aFyrye (11)

PR |
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The Gaussian martingale model 11l

© Under the T, measure, the probability of exercising a caplet expiring in Ty is

F(t, T1, Tz) — K

N(d1), where di =
(h) ' V(t, 1)

@ The caplet price is
P(t, T2) x ((F(t, Ta, T2) = KN (dh) + v/ V(& To)n(eh) ) x am, 1,

where
_ F(t‘, T1, T2) - K

\/ V(t, T1)

and n(x) is the standard Gaussian density.

i

PR |
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Forward Measure and the Shifted
lack Model
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The Shifted Black model |

@ In the last few years, we have seen the appearance of negative rates, so that
the Lognormal assumption has been released.

@ A possible approach is model the simple forward rate under the T, forward
measure according to a Shifted Black Model without drift.

o We set dX(t) = o X(t)dW2(t), (i.e. a GBM process), so that
X(s) = X(t)e~ T (= +a(WT2()-WT(0),

@ Then we set
F(t, Ty, T2) = X(t) — 6,

so that
F(s, T1, T2) = (F(t, T1, T2) + 5)6*% s=t)+o(WR(s)-WT(r) _ 5
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The Shifted Black model Il
@ In practice, we assume that
In(F(s, Ty, T2) + 6) = In(X(s)) ~ N (M(t,s), V(t,s)),

where
2

M(t,s) = In(F(t, Ty, Ta) + 6) — %(s _—

V(t,s) =o?(s — t).

@ Using the Ito’s lemma, we also the dynamics of the simple forward rate

dF(t, Ty, T2) = o(F(t, Ty, To) + 6)dW 2(t),t < Ti.

PR |
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The Shifted Black model 11l

Question
@ Using this model show that
@ The price of the LIBOR in advance is

P(t, Tz) X F(t, T1, T2) X QT Ty-
@ The price of the LIBOR in arrears is
P(t, Tz) X F(t, T1, TQ) X ar, 1, + TA(t, T1, T2),

where the timing adjustment TA(t, T1, T2) is given by

TA T T2) = P(ET)ED (F(TL T To) ks (12)
© The caplet price is
P(t, T2) x ((F(t, Ty, T2) + )N (dh) — (K + 5N () x an, 7,

Whele P
F(t, Ty, +6 o T
|n ( ( Kl ;2) ) :l: > ( i t)

o+/(Ti —t)
The Change of Numeraire SMM269  82/149

dip =

R



Forward Measure and pricing of
bond options
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Pricing options on coupon bond |

@ The payoff of the option on a coupon bond is

+
n
(Za;l,; x ¢ x P(To, T;) + P(To, Tp) — K) :

i=1

where Ty is the option expiry ad T; > Ty are the payment dates of the bond
(only cash flows occurring after the option expiry matter).

@ We can rewrite it in terms of the forward bond price

i +
(Zai—l,ixcx'D(T07TOaTi)+P(T07T07Tn)_K> .
i—1

R
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Pricing options on coupon bond Il

@ The option price is, taking the Tog — zcb as numeraire:

P(t, To) xET® ((CB(TO, To, {Th s Ta}) = K)+>

P (To, To)
where CB is the forward price of the coupon bond
CB(t) = CB(t7 T07 {T17 () Tn}) = ZO{;_L,‘XCXP(L TO; 7—I)+P(t7 TOa Tn) .
i=1

@ We observe that this forward price is a martingale and we assume it has a
lognormal dynamics

dCB (t) = o (t) x CB(t) x dW o (t),t < T.

R
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Pricing options on coupon bond Il

@ Therefore, we can apply the Black formula to get:
P (t, To) x (CB(t) x N (d1) — K x N (o))

where

In (Ci(t)) +3x ftT” 025 (s)ds

=
Ji " otg(s)ds

@ Notice that there is some inconsistency in assuming that the zcb (forward)
prices are lognormal and at the same time the (forward) coupon bond price
to be lognormal: a sum of lognormals is not lognormal.

dio =
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Forward measure and
Expectation Theory
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Forward Measure and Expectation Theory (ET) I

@ Recall that the instantaneous forward rate is defined as

_AInP(t,T) 1 0P(t,T)

oT  P(t,T) 0T

F(t,T)=

T

@ ET assumes that current forward rates have some predictive power in
forecasting future interest rates, i.e.

f(t, T) =E:(r(T)).

@ The ET is often tested empirically using historical data and with
contradictory results.

@ Does it make sense to test the ET under the empirical measure?

R
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Heqing

Heqing


Forward Measure and Expectation Theory (ET) Il

@ Let us consider: B .
P(t, T) = (e o)

and let us take the derivative with respect to T and change sign. We have

oP (t7 T) . - fT r(u)du
g = R (M)
= P(t, T)E/ (r(T))
= P(t, HE{ (f(T,T)),
where in last two lines we have used the change of measure and the
relationship between r(T) and f (T, T).

@ We also have

(1) = D sy ~EL(F(T.T)

= E/(f(T.T))

PR |
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Forward Measure and Expectation Theory (ET) IlI

@ Therefore, no arbitrage says that the instantaneous forward rate f (t, T) is a
martingale under the forward measure T.

@ The expectation theory says that f(t, T) = E;(f (T, T)), i.e. that the
instantaneous forward rate is a martingale under the real world measure.

@ Then the econometricians usually test the expectation theory under the
empirical measure!

@ No reason for which the ET should hold.

PR |
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Pricing stock options with
stochastic interest rates
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Forward measure and pricing stock options with
stochastic interest rates |

@ We have to price the payoff
(S(M)-K)".

@ Let us consider the option to be on the forward price rather than on the
stock price, with the forward expiring at the option maturity.

o The forward price of the stock is given by

S(t)

SET =561y

andatt=T,wehave S(T,T)=S(T)/P(T,T)=5(T).
o Therefore, we want to price the payoff

(S(T,T)-K)*.
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Forward measure and pricing stock options with
stochastic interest rates |l

@ Let us consider as numeraire the zcb expiring in T, so that we have to
compute

c(ty=P(t, TE] (W)
— P(t, T)E] ((S(T, T) - K)*) .

@ In order to compute the expectation, we make the assumption that the
forward price of the stock has a GBM dynamics.

@ In addition, being a relative price, it must be a martingale and therefore the
forward price has zero drift

dS(t, T)=or(t, T)S(t, T)dW'.

PR |
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Forward measure and pricing stock options with
stochastic interest rates Il|

@ We have to chose the volatility o (t, T). We observe that

S(t)
P(t,T)

InS(t,T)=1n =InS(t)—InP(t,T),

sothat dInS(t,T)=dInS(t) —dInP(t,T) and
Var(dInS(t,T)) = Var(dInS(t) —dInP(t,T)),

and
o2(t, T) = o2(t) + o3(t, T) — 2pos(t)or(t, T).

@ Solving the sde, we have

S(T,T)=S5(t, T)e ) oHsTIdst [T or(s W)

)

i.e. the same expression as in the Black-Scholes model where r = 0 and
02 (T — t) has been replaced by ftT 0% (s, T)ds. S
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Forward measure and pricing stock options with
stochastic interest rates IV
@ Therefore, the option price is
P(t, T)(S(t, T)N(ch) — KN (db>))
In 2T 1+ 11752 (s, T)ds
[T o2 (s, T)ds .

dip=

3

@ We can rewrite the pricing formula in terms of spot quantities

5(¢)
P(t, T)

P(t.T) ( N (dy) - K/V(dz)) — S(E)N(dh) — P (£ T) KN (db),

and
In

tT)i ft 2(s,T)ds

12 =

f 02 (s, T)ds

@ Notice that we can interpret this formula as the price of an exchange optlon
(that is discussed later on). sone{am
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Now, the main point is how to chose the zcb volatility function op(t, T).

Clearly, it must satisfy the pull-to-maturity constraint
op(T, T)=0,VT >t

@ We can choose op(T, T) according to the Heath-Jarrow-Morton model that
relates it to the volatility function of the (instantaneous) forward rates via

op(t, T) = / or(t, 5)ds.

Notice that the above constraint is satisfied.

@ Possible choices for o¢(t,s) are

o Constant, i.e. o¢(t,s) = o, so that
op(t, T)=0 x (T —t).
o Exponentially decaying i.e. o¢(t,s) = ce M7~ so that

1— e—/\(T—t)

op(t, T)=0 ;y
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Forward rate dynamics under the
same ‘measure
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Remark: How many forward measures?

@ Observe that the forward rate F(t, T;, T;11) is a martingale only under the
measure T;y1.

@ So each forward rate is a martingale under a particular measure.

@ In order to price more complex instruments, we need to model together rates
of different maturities under the same measure (e.g. the risk neutral one, or
the so called terminal measure).

@ In order to reconduct the forward rate processes under the same measure, we
need a change of measure and the Girsanov theorem.

R
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Forward rates under the same measure

@ The LIBOR market model is set up by assuming a lognormal dynamics for
each forward LIBOR rate F;(t) = F (t, T;, Ti+1) with respect to the
probability measure Q/*1,

@ However, to price exotic derivatives, we need to model all LIBOR rates under
the same measure. In general, it is convenient to use the terminal QN“

measure
@ It can be shown that t < s < T;, F;(s) has sde under the terminal measure
QN+1
N
dFi(s) = - Z i (s) Fi (s) ok (s) Fi () ok kv dt
k—1ti 1+ F (s, Tk, Tht1) Qs

+0;(s) Fi (s) dWNTL (s).

@ Therefore, apart from Fy (t), all forward Libor rates are no longer
martingales under the terminal measure, but have a drift that depends on the
forward Libor rates with longer maturities.
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Remarks

@ The set of sde's (14) for i = 1,--- , N represents the Forward LIBOR
Market Model.

© The implementation can be performed via Monte Carlo simulation, because
we need to simulate all forward rates at the same time.

© The model calibration is straightforward: the volatilities o; are obtained by
bootstrapping the term structure of volatilities of cap prices. Unfortunately,
we cannot fit the full smile and for this we need stochastic volatility models.

@ Brigo and Mercurio & Veronesi (section 22.6) discuss the extension to the
multifactor version that allows for a not perfect correlation among the
Brownian motions driving the F; and F; forward rates.

© The Bachelier version is obtained replacing everywhere o;F; by o;.

@ Brigo and Mercurio, pagg. 198-203, discuss also the problems of modelling
F; (t) under the risk neutral measure, that is required for some product like
Eurodollar futures.

@ In general, these set of sde’'s do not admit a closed form solution, so we have
to use numerical methods such as Monte Carlo method to solve it. See
Pelsser chapter 8. z
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Pricing swaptions:
The Annuity as numeraire and the
Swap measure
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Swap measure and swaption pricing |

@ A swaption pays at maturity
c(T)=(S(T.To, T.) = K)" > ar_, 7,P(T.T)).
i=1

@ We need a numeraire num (t) that makes easy the computation of

(S(Tv To, Tn) - K)jL 27:1 O‘Tf—l,Ti'D(Tv TI)
num(T)

c(t) = num (t) E{“"
@ It can be convenient to chose
n
num (t) = Zat’TV.P(t, T .

i=1

@ The associated probability measure is called swap measure (Jamshidian,
1996) and is denoted by S.

- ram

©Gianluca Fusai (Cass ) The Change of Numeraire SMM269 102 /149



Swap measure and swaption pricing |l

@ Therefore

= (2,1: 047—,-_1,7';P(t7 T:)) E% {(S(T, TO; Tn) _ K)Jr} ]

Problem
What is the distribution of S (T, To, T,) under the swap—measure?

oS det |
) (f( - 0 ax t ELSk)
) 5% <ﬂ)+Jﬁ
LAchfeer - )
A5x)= 6 A W{
()= A ESL (5tm-k)
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Heqing

Heqing

Heqing

Heqing

Heqing


Swap measure and swaption pricing IlI
@ The forward swap rate is given by

P(T,To)—P(T,T,)

S(T, Ty, T,) =
( o ") 27:10‘77—1,7';,3(7—7 TI)7

and so, being S(T, Ty, T,) is a relative price with respect to the annuity, it
has to be a martingale.

@ We need to fix its dynamics. The most common are

Model ‘ Dynamics
Bachelier dS(t) = o x dWA(t) , t<T
Black dS(t) = o x S(t) x dWA(t) , t<T
Displaced Black | dS(t) =0 x (S(t) +0) x dWA(t), t<T

- ram
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Swap measure and swaption pricing IV

@ For example, if we assume that S is lognormal
ds(t7 TOa Tn) = O-SS(ta TOa Tn) dWS7 t S TO-

@ Therefore, the Black formula for swaptions is valid
C(t) = <ZO‘T;1,T/’D(t7 TI)) x (S(t’ To, TH)N(dl) - KN(d2))7
i=1

with

PR |
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Question

%&Ck/ﬁlw@/ww% Ao(/@f %Mﬁmfr
bt ﬁvwwv@ hasgare ondl  Guap Mecside

What is the swaption price if the forward swap rate is assumed to be a Gaussian
martingale (Bachelier model)

dS(T, Ty, Ty) = 0sdWS?

R
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Heqing

Heqing

Heqing

Heqing


Swap vs Forward measure

Problem: Each forward rate F (¢, Ty, T3) is a lognormal r.v. under its own
measure " T,". Are they still lognormal under the swap measure?

@ Problem: The swap rate is a lognormal r.v. under the swap measure. Swap
rate is an average of forward rates. What is its distribution under the forward
measure?

Brigo and Mercurio, pagg. 227-229, discuss the dynamics of forward LIBOR
rates under the swap measure and viceversa and the problems related to
assume a lognormal distribution. The incompatibility seems to be mostly
theoretical.

Indeed, if forward rates are higly correlated, the swap rate will be still
approximately lognormal also under a change of measure.

Using this fact, Brace, Gaterek and Musiela give an approximate Black
formula for swaptions, see Brigo and Mercurio.
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Spot measure
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Spot measure and exchange option |

@ The payoff is
(S51(T)— % (T))+k~

@ If we take the stock 1 as numeraire and define the martingale

S, (t)
51 (t),

Z(t) =
the price of the exchange option is

(ST =S (T)" _ 3 -
S (t) x E? ( A >—51(t)><Ef ((1—Z(T)) )

PR |
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Heqing


Spot measure and exchange option Il
@ This is a put option on Z and if we assume it is lognormal, i.e.
dZ (t) = 02Z (t) dW™ (t),
we get the Black formula
S1(t)x(Lx N(—db) — Z(t) x N(—dy)),

where
In(Z(t))£3x0%2x(T—1t)
VoZ x (T —t) '
@ Using the definition of Z (t) and replacing in the above formula, we get the
so-called Margrabe formula for an exchange option

dip =

S (t) x N (—dz) -5 (t) x N (—dl) R

where

s
In (5;8) +Ixod x(T—t)
dip =

Voo x (T —t)
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Spot measure and exchange option IlI

@ How do we choose the volatility 77
@ Given that Z (t) = S, (t) /S1(t), we have

InZ(t) =InS;(t) —InS1 (),

and then
dInZ(t) = d|n52(t)—d|n51 (t),
and then
Var (dInZ (t)) = Var (dIn Sz (t) — dIn 51 (t)),
i.e.

o2dt = o2dt + oidt — 2poy0adt,
where 02 = Var (dIn S; (t)) and

p= Corr(dInS; (t),dInS; (t)).

@ Therefore
2

2, 2
0, =05 + 07 — 2po102.

PR |
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Spot measure and exchange option IV

@ The option price is, ceteris paribus, higher as the correlation between the two
stocks is lower.

@ Indeed, larger the volatility of the spread greater the option value.

1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Correlation Coefficient

Figure: Volatility o, of the spread varying the correlation coefficient
(01 =0.3,020 =0.2)
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Spot measure and exchange option V

@ Instead, the effect of an increase of the volatility of one stock depends on the
sign and on the value of p.

@ if p is negative, larger o; greater the volatility of the spread

@ if p is positive and large, larger o; then the spread volatility at first decreases
and then increases.

@ if p is positive and small, larger o; larger the spread volatility.

PR |
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Spot measure and exchange option VI

—8—p=-0.7 —@—p=0 —8—p=0.7

o
o

AxisTitle,

M.M

o
N

o
-

o

0 0.1 0.2 03 0.4 0.5
Volatility stock 2

Figure: Volatility o, of the spread varying the volatility of stock 2 (o1 = 0.3).
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Other Applications

@ Using the change of numeraire technique, we can see several applications,
such as
o Forward LIBOR market model where we find the process of all forward rates
under the same measure.
o Forward Swap market model: how to write the process of the forward swap
rate under the risk neutral measure or under the forward measure?
o Convexity adjustment for Constant Maturity Swaps.
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B @ e N SHATA260 e 49



Procedure

@ Given that we know the dynamics of F; 1, 7.,, under the measure T;;, how
to find its process under a different measure?
@ Two steps:

© how to go from a measure P to the new measure Q7
o Find the Radon-Nykodim derivative dQ/dP.

@ how to find the distribution of F under the new measure?

o If the uncertainty is described by a Brownian process, we can use Girsanov
Theorem.
@ The change of measure results in a change of drift.
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Girsanov’'s Theorem |

@ The Change of numeraire allows us to calculate the expected value under a
given measure computing an adjusted expected value under a different
measure.

@ In order to make the result useful, we should be able to compute the new
expected value.

@ The Girsanov theorem provides a tool to determine the effect of a change of
measure on a stochastic process.
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Girsanov’'s Theorem Il

Fact (Girsanov Theorem)

For any stochastic process k (t) such that (Novikov condition):

exp (—é/t-rk2 (s) ds)} < 00,

with probability one, consider the Radon-Nykodyn derivative dQV /dQN =: v (T)

E,

1 /T T
wﬁj_em{—z/’kﬂﬂd&b/ ugaw”@%, (14)
t t
where WV s a Brownian motion under the measure QV. Define

WWQ:WW&—Ak@&

WM (t) is also a Brownian motion under Q.
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Girsanov’s Theorem IllI
@ We can also write in differential form
dWM (t) = dWN (t) — k(t) dt,

” dWV (t) = dWM (t) + k (t) dt,

@ If we have the sde
dX = m(X, t)dt + s(X, t)dW"(t),

we can write the dynamics of X under the new probability measure by
replacing dW"(t) by dWM(t), so that

dX = (X, t)dt+o(X, t)dWN(t) = u(X, t)dt+o(X, t) (dWM(t) + k(t)dt),
so that the new process is

dX = (u(X, t) + o(X, t)k(t)) dt + (X, t)dWM(t),

- ram

i.e. we have a change of drift.
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The receipe

@ Start with the process under the measure QN and the corresponding
numeraire.

Choose a new numeraire M and compute the Radon-Nykodym derivative as a
ratio of numeraires.

@ Write the Radon-Nykodyn derivative in the form (14) and identify the process
k(t).

Using k (t) define a new process dWM, i.e. a Brownian motion under the
new measure.

@ Replace dW" in the risk-neutral process with dW™ + kdt in the new
measure.
@ The change of measure results to be a change of drift, while the volatility

turns out to stay the same under both probability measures

pdt + cdWM = (u+ ko) dt + cdWV.
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Meaning of k(t)

@ Process under the measure QM :

% = pMdt + odWM,
@ Process under the measure QV :
yX = uNdt + cdW",

where
,uN = uM + ko

and therefore

i.e. the risk-adjusted expected excess return.

@ For example if QM is the risk-neutral measure, ™ = r¢, and QV is the
empirical measure, k is the risk-premium.
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Application 1: Black-Scholes Model

@ Under the risk-neutral measure, we have:

dB = rBdt,
dS = rSdt+ oSdW,.

@ But what is the process and the distribution of S under the spot measure?

@ We now follow the receipt:

© write the Radon-Nykodyn derivative as a numeraire ratio;
© use Girsanov theorem to identify the drift adjustment k (t):
© define a new BM under the new measure.

PR |
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Use the Receipt |

@ The Radon-Nikodym derivative is:

dQ® _ S(T)B(t)
dQf — B(T)S(t)
5 (1) (= F)T-0ra (WD)
e’ 5(t)
_ ef%z(Tft)+a(W(T)7Wt).

@ To apply the Girsanov theorem, let us consider the R-N derivative and try to
identify the function k (t):

dQ° S (Toa(W(T)- W)
dQB
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Use the Receipt Il

@ So we should chose k (t) such that:

o= b T R()dst [T K(s)dW(s) — =% (T—t)+o(W(T)- W)

= k(t)=0, Vvt |

@ Therefore, by the Girsanov Theorem we can define a new process dW; :
dW? = dW, — odt,

that is a BM under the measure Q°.

R
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The dynamics of S under Q°

The function k (t) allows us to change measure.

From a practical aspect we can write the driving Brownian process as

dW = dW?® + odt.

The asset price process under the new measure is given by:
dS = rSdt+oSdW,
= rSdt+ oS (dW?® + odt)
= (r+0?) Sdt+oSdw>.
——

change of drift

The positive aspect is that S under the new measure has again a lognormal
distribution:

5te(r+027"72>(T7t)+a(W(T)$7Wts)

5(T)
Ste(r+"72)(Tft)+U(W(T)57Wt5).
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Pricing LIBOR in arrears
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Forward measure and pricing LIBOR in arrears |

@ In a LIBOR in arrears contract at time T; we get the amount
L(T17 T2) X 0Ty, Ty

whilst in a standard contract the above payoff is paid in T5.

@ We can rewrite the payoff using the forward rate
F(T17 Tla T2) X Ty, Ty-
@ Now let us move the payoff to time T,

F(Ty, Ty, T2) x a1, x (L+ F(T1, T, T2) ary 1)
= F(T17 T17 T2) X aThTZ + F2 (Tl’ Tl’ T2) a%rhTZ'

@ The market value of the first term is just (use the fundamental recipe)

P(t7 T2) X F(t, Ty, T2) X Ty, Ty

R
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Forward measure and pricing LIBOR in arrears Il

@ In order to price the second component let us chose the T, — zcb as
numeraire. The market value of the second component becomes

F2(Ty, Ty, T,
Pt P (SST ) ol

=P(t, o) x E[* (F?(T1, T1, T2)) x o3, ..

@ We know that under the T, measure the forward rate F (t, T1, T2) is a
martingale.

@ The difference with respect to a standard contract is given by the so called
timing adjustment:

P(t, To) x E? (F? (T, Ty, T2)) x a2T1,T2-

R
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Forward measure and pricing LIBOR in arrears IlI
@ In addition, if we assume that the forward rate is lognormal, we can write
dF (t, Ty, To) = oF (t, T1, T2) dW 2 (1),

or
F(T1, Ty, T2) = F(t, T1, T2) e~ 3" (M=) +o(WR(T)-WT(1))

@ Therefore

F2 (Tla 7—17 TQ) — F2 (t, Tla T2) efa’z(Tlff)JrZ?(WTZ(Tl)*WTQ(t))

)

and
E[ (F?(Ty, T1, Ta))
= Ez—z (F2 (t, T, T2) Xe—oz(Tl—t)—t-Za(WTz(Tl)_WTz(t)))
= F2(t, Ty, To) xe @ (-0 xR (e%(W“(Tl)fWTZ(t)))

= F2(t, Ty, To) xe™7 (1=t g30°(Ti=1)

=F%(t, 11, T (T t)
= ( 1, 2) xe?
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Forward measure and pricing LIBOR in arrears IV

(where in the computation of the expectation in the third line, we have used
the moment generating function of a Gaussian random variable).

@ In conclusion, we have that the t—value of the Ty—payment L( Ty, T2) ar,. 7,
is

ID(I'7 T2) X F(t'7 Tl; T2) X ar, 1, X (1 + F(t, le Tz) X eaZ(Tl_t) X 047'1’7'2) .
@ The timing adjustment is given by
P(t, o) x B[ (F? (T, T1, T2)) x a2, 7, x 7 (=9,

@ Notice that if the volatility is not constant, but time varying in a
deterministic way, we have to replace

a? x (Tl — t),

T
/ o?(u)du,
t

as a consequence of the isometry property of the Brownian motion
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Pricing FRA in arrears
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Forward measure and pricing a FRA in arrears |

@ In a FRA in arrears, we receive at time T; the amount
(L(Tlv T2) - K) X QT T,-

@ The present value of the floating amount has been obtained before. The
present value of the fixed amount is

P(t, T2) x K x a1,
@ Or, moving it forward to time T, we get
Kxannx(1+F(T1, T, T2) X an. 1),
@ lts fair value considering as numeraire the T, zcb is

P(t, T2) x K x ar, 1, X (1 + F(t, T1, T2) X aTl,T2)~

PR |
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Forward measure and pricing a FRA in arrears Il
@ The present value of the FRA in arrears is therefore
P(t.T2) x (F(t. T, To) x (14 F (6,0, To) x e (9 xar, 1) ) x amy
—P(t, o) x Kx(14+ F(t, T1, T2) X a1y, 1) X OT,. T
@ The FRA has zero value if
F(. T o) x (14 F (6 T0, To) x €79 g, 7, )
=Kx(1+F(t,T1, T2) X an. 1),

i.e. if

1+ F(t, T, o) x e =0 s ap, 1,
X .

K=F(t Ty, T
(t, 71, T2) 1+ F(t, Ty, L) x a1,

(15)

@ Notice that, given that the term e (Ti=t) 5 0, we always have
Karrears > F(t’ Tl’ T2) — Kadvance. w

g
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Pricing options on
a zero-coupon bond
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Forward measure and pricing options on a zcb |

@ The payoff of the Ty-option on a Ti-zcb is
(P(To, Th) = K)*

(here Ty is the option expiry; exercising the option we get a zcb with expiry
in Ty, T1 > To)
@ We can obtain different pricing formula depending on our modelling
assumption
@ the simple forward rate is lognormal and then we exploit the equivalence
between a call option on a zcb and an appropriate number of floorlets ( a
variant of this is to assume that the forward rate is Gaussian), OR
@ the zcb forward price is lognormal.
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Forward measure and pricing options on a zcb |l

Method 1: the forward rate is a lognormal martingale

@ If we use
1

1+ L x 04'1'077'17

and

1
P(To, Ty) =
(To, Th) 1+ L(To, ) X ary.1,

we have the following payoff in Ty

(P(To, Th) — K)©

B ( 1 B 1 )*
a 1—|—L(To, Tl) X a1y, T, 1+Lk><aTo,T1

1 ATy, T, 4
% : x (Lx — L(To, T
1+ L(T()7 Tl) X Ty, Ty 1+ Lk X art, 1 ( k ( 0 1))

ATy, T, +
P(To.T1) x ———2 1 x (L — L(To, T .
(To. T1) 1+ L X ar,T (Lx (To. Th)) G
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Forward measure and pricing options on a zcb IlI
@ This is equivalent to the T; payoff

Ty, T, +
YT (L~ L(To, T1))F.
1+ L, x ATy, Ty ( k ( 0 1))

. ATy, T . .
i.e. to 71“”&;“1 floorlets that can be priced using the Black formula

T, . T
P(t,Ti) x ———22—— x (Lg x N(=db) — L(Ty, T1) x N(—d
(t, T1) T ppv—— (Lk (—=d2) — L(To, T1) (—ch))

where

L () £
1,2 = .

VI o¥(s)

@ We can also have the variant where the forward rate is a Gaussian martingale.

PR |
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Forward measure and pricing options on a zcb IV

Method 2: the forward price is a lognormal martingale

@ We rewrite the payoff of the option on the zcb using the forward price on the

zcb
(P(To, To, Th) — K)*,
where P(t.T)
ta 1
P(t, Ty, T1) = ——=.
(7 0, 1) P(t,To)

@ If we consider as numeraire the Ty-zcb the option price is

P(t, To) x E]0 ((P(To, To, T1) — K)+>

P (To, To)

= P(t, To) x EP ((P(To. To, T1) = K)").

@ The forward price is a martingale being a relative price with respect to the
numeraire.
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Forward measure and pricing options on a zcb V

@ In addition, if we assume P (t, Ty, T1) to be lognormal with dynamics
dP(t, To, T1) = op (t, To, T1) x P(t, To, T1) x dW T (t),
we can apply the Black formula to get the option price
P(t, To) x (P (t, To, Ty) x N (d1) — K x N (b)),

where

in (PERT) 3 [T 02 (u, To, Ty) du

\/ftTo 02 (u, To, T1) du

@ If the volatility of the forward price is constant, then

dip =

To
\// 0% (u, To, T1) du = o x (To — t).
t

R
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Remarks on pricing options on zcb

@ The two formulas differ because:

@ in the first case we assume the simple forward rate to be a martingale
lognormal under the Ti-measure and o refers to the percentage volatility of
the forward rate (and can be assumed to be constant);

@ in the second case we assume the forward price to be a martingale lognormal
under the To-measure and op refers to the percentage volatility of the forward
price (and cannot be assumed to be constant).

@ Given that 1

1+ F(t To, Tl) X Ty, T1

P(t TO, Tl)

the lognormality of F does not imply the lognormality of P.
@ Moreover, they are lognormal r.v's under different measures:

@ In general, it is more convenient to model directly interest rates because

o we do not need to guarantee the pull to maturity constraint and

o if we model them as lognormal r.v.’s we can guarantee that they remain
always positive.

o if we prefer to have negative rates, we can shift to the Gaussian martlngale
forward rate model.
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Modelling zcb prices: the HJIM model |

@ An important question is if
dP (t, To, T1) = op (t, To, T1) x P(t, To, T1) x dW 0 (¢) (16)

is a valid model.

@ The answer is positive and the model is the Gaussian Heath-Jarrow-Morton
model.

@ In this model, instantantaneous forward rates are modelled according to

df(t, T) = Drift™"(t, T) x dt + o¢(t, T)dW"™™(t), (17)
f0,T) = f™(0,1), (18)
for0<t<T.

@ This is an infinite dimensional model because we have to model forward rates
for all possible values of T.

A particular HIM model is only specified once (0, T) and o¢(t, T) have
been specified.

@ Then the drift is chosen according so that, using different numeraires, relative.

prices are martingale.
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Modelling zcb prices: the HJM model Il

@ In particular, we have
Measure Numeraire Drift(df (¢, T)) Drift(dP(t, T))

Risk-Neutral MMA o(t, T) ft o(t,u)du r(t)P(t, T)
Forward S S-zcb o(t T) ft (t,u)du

@ Then the dynamics of forward prices in (16) holds and
op (tv To, Tl) = UP(t7 TO) - JP(tv Tl)a

where op(u, T) refers to the percentage volatility of the zcb price and is
related to the volatility of instantaneous forward rates trough

-
op(t, T) = /0 or(t, u)du.

@ The inverse relationship also holds

8(7/3(t7 T)
The Change of Numersie w260 143140

Uf(t, T) =



Modelling zcb prices: the HJM model Il

@ Popular choices of the volatility function in the Gaussian HJM model are

Table: Volatility specification in two popular Gaussian one factor
Heath-Jarrow-Morton model

Model or(t, T) op(t, T) op(t, To, T1)
Ho and Lee o ox (T —1t) ox(Ty— To)
Hull and White g T-0  gl=e X0 j1oe a9 jaoeni(fon)

and in the Table above we have

SDev(df(t, T)) = o¢(t, T),
-
SDev(dP(t, T)) = op(t,T) :/ or(t,u)du,
Ty
SDEV(dP(t, To, Tl)) = O',D(t, Tl) — O’p(t, To) = /7— Uf(t, u)du.

- ram
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Pricing caplets in
Gaussian HJM models
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Caplet pricing in Gaussian HJM models

@ The caplet payoff at time T;y; is given by:
AT, Tia (F(-rla -rl'a 7-H-]-) - LX)+
@ Consider as numeraire the zcb expiring in T; 1. The caplet price is

aTiniHP(t? Ti-i-l)]EtTiJrl |:(F(TH Tia Ti+1) - Lx)+i|

P(T:. T)) .
— (1 T L .
(P(T,-, T (TS *)> ]

= 'D(ta Ti+1)EZ—H1

= P(t’ _’_I'+1)IEITHrl

PR |
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Option pricing in HJM

@ Under the T;i 1 measure, the quantity Q (¢, T;, Tix1) = P (¢, T;)/P (t, Tiy1)
is a relative price and then a martingale:

POT) g [ LT )
- t
P(t, Tit1) P(Ti, Tiy1)

@ In HJM Gaussian models, Q (t, T;, Ti11), being a ratio of lognormal prices, is
lognormal (whilst in HJM the simple forward rate is not lognormall!!).

@ We can apply the Black formula to Q (t, T;, Tit1).
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The caplet formula for HJM

@ Considering as underlying variable the quantity Q (t, T;, T;+1), we can apply
the Black formula:

P(t, Ti) [Q(t, Ti, Ti)) N (dh) = (1 +7LIN (d2)]  (19)
= P(t, T,’+1) [(1 + TFt,T,',T,'H)N(dl) — (1 +TLX)N(d2)]

where:

(I4+7F(t,Ti,Tiv1)) | 152
dy = In (1+7Ly) +22t,ThTi+1.

2
\/ Zf,TivTH—I
_ _ 2
o = d \ Ztv-l—r'a-’—i+1

T;
Vars (dIn Q (s, T;, Tiy1))

2
I N T

.
(op (u, Ti) — op (u, Ti+1))2 du

—

R
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ZtTT

° X2, 7,,,fepresents the integrated instantaneous variance of dIn Q and
depends on the particular Gaussian HJM model we are using.

@ Ho and Lee
Zz(t7 T, T+7) 20272(T— t).
@ Extended Vasicek Model

2
y?2 (t, T, T+71)= ;/\3 (1 — e*)‘T)2 (1 — esz(T*t)) .

@ Two factors Hull and White model (see Brigo and Mercurio pag. 151):

2 (t, T, T+71)
=55 (1- )’ (L= o)
Lo (1- e—m)2 (1— e=2%(T-1)

223
(fe_)‘l"Jrl) (fe_*27+1)
+2p>\?f>\22 A1 A2 (1 -

e*(>\1+>\2)(T*t)) )
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How many forward measures?

If we use the forward measure, the forward rate F(t, T;, T;+1) is a martingale
only under the measure Tjy;.

So each forward rate is a martingale under a particular measure.

In order to price more complex instruments, we need to model together rates
of different maturities under the same measure (e.g. the risk neutral one, or
the so called terminal measure).

In order to reconduct the forward rate processes under the same measure, we
need a change of measure and the Girsanov theorem.

@ Forward Libor rates considered under different measures, will be anymore
martingale so that expensive Monte Carlo simulation will be required.
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The Libor Market Model: Forward rates under the
same measure

@ The LIBOR market model is set up by assuming a lognormal dynamics for
each forward LIBOR rate F;(t) = F (t, T;, Ti11) with respect to the
probability measure Q1.

@ Hence each LIBOR rate is modelled under a different probability measure.
However, to price exotic derivatives, we need to model all LIBOR rates under
the same measure.

@ The sde’s for two adjacent forward rates F;_1 (t) and F; (t), under their

respective measures, are: @ .
~,étwrw/«uz[£
dF,'_1 (S) = O0j—-1 (S) F,'_l (S) dWi,
dFi(s) = oi(s)Fi(s)dw.

@ Here, we assume that the two forward rates are perfectly correlated, but we
can generalize to a non-perfect correlation case.
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Fi_1(t) under Q1 1

@ Our problem is to find the dynamics of F;_; (t) under the measure Q'*1.
@ It is convenient in the derivation, to move from the Q'+ measure to the Q'.
@ Let us consider the ratio of numeraires that gives us the R-N derivative ¢ (T):
dQ’ P(T, T;) P(t, T;
v = d@%l - P((t, T,-)) P ((T : T,:ll)) .
1 + F(T, T,', Ti+1) Qi1

= 2
14+ F(t, T, Tiy1) aijiga 2)

@ In order to use the Girsanov Theorem we need to find k (t) s.t.

1 /7 T _
Y (T) = exp (2/ k2 (s) ds+/ k(s) dw't (s)> :
t t
® We recall that ¢ (s), t <s < T, is martingale under the original measure
Q'*. Moreover, by applying Ito's lemma, we get
dip(s) =0 x ds + k(s) 1 (s) dW T (s). (3)
The FLMM SMM269 625
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Fi_1(t) under Q'*1 II

@ An application of Ito’s lemma to (2), gives us for s > t:

dip(s) =

1

1
1+ Fi(s) aiiv10i(s) Fi(s) @i
1+ Fi(t)ajizn 1+ Fi(s) i
v (s) 01:' (s) Fi (s) i
+ Fi (s) @i ita

d(1+ Fi(s)ajit1)

o; (s) Fi (s) i ip1dW'™ (s)

dwi+1 (S)

dwi+1 (S)

@ Comparing 3 and 7, we can identify k as:

©Gianluca Fusai (Cass )

oi (s) Fi (s) aiita
1+ Fi(s)aiizr

— k(s) =

The FLMM
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Fi_1(t) under Q1 1
@ Girsanov's Theorem now gives the relation:
dW' (s) = dW' (s) — k(s) ds
and the process for F;_; (s) under the measure Q' will be:

dFi_1(s) = oi_1(s)Fi_1(s)dW’
~oi—1(s) Fi—1(s) oi (s) Fi (s) @i+
1+ F(57 T, Ti+1) Q41
+0i_1(s) Fi_1 (s) dW (s).

ds
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Fi_1(t) under Q' IV

@ If we use repeatedly this result, we can obtain that for t <s < T;, F; (s) has
sde under the terminal measure QN+!

dFi(s) = — Z oi (s) Fi(s) ok (s) Fk (s)ahkﬂdt

k—Tti 1+ F(S7 Tk, Tk+1) Ok k+1

407 (s) Fi (s) dWNTL (s).

@ Therefore, apart from Fy (t), all forward Libor rates are no longer
martingales under the terminal measure, but have a drift that depends on the
forward Libor rates with longer maturities.
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Remarks

© The set of sde for i =1,--- , N represents the Forward LIBOR Market Model.

© The implementation can be performed via Monte Carlo simulation, because
we need to simulate all forward rates at the same time.

© The model calibration is straightforward: the volatilities o; are obtained by
bootstrapping the term structure of volatilities of cap prices. Unfortunately,
we cannot fit the full smile and for this we need stochastic volatility models.

© If we assume that the Brownian motions driving the F; and F; forward rate
are correlated with correlation p;;, the dynamics becomes

dFi(s) = — Z i (s) Fi (s) ok (s) Fk (s)ak7k+1p

L dt
1+ F (s, Tie, Thg1) Qe kt1 ok

k=14
+0;(s) Fi (s) dW/N T (s).

@ The Bachelier version is obtained replacing everywhere o;F; by o;.

@ Brigo and Mercurio, pagg. 198-203, discuss also the problems of modelling
F;i (t) under the risk neutral measure, that is required for some product like
Eurodollar futures.
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The FLMM & Monte Carlo
simulation
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Monte Carlo simulation of forward rates |

© Let us consider the dynamics of forward rates
Fi(t) = F(t, T;, Tix1),i = 0,-, N under the Ty 1 measure (assume perfect
correlations between Brownian motions)

dF. (S) — i gj (S)Fi(s)Uk (S) Fk (S)ak’k+1dt
, k=141 1 + F(57 Tka Tk+1) ak,k+1

+0;(s) Fi (s) dWNTL (s).

@ Apart from Fu(t) all the remaining forward rates are not martingale under
the terminal measure, but have a drift that depends on the values of the
forward rates with a longer maturity.

© In general, these set of sde's do not admit a closed form solution, so we have
to use numerical methods such as Monte Carlo method to solve it.
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Monte Carlo simulation of forward rates |l

@ Set a; = T;11 — T; to be the tenor of the forward rate and A the time step
in the time-discretization.

@ It is convenient to set the time step dt equal to the tenor of the forwar rates.
So if we evolve monthly (quarterly/semi-annual/annual) forward rates we
adopt a monthly (quarterly/semi-annual /annual) step.

@ The increment of the Brownian motions are simulated via
dWNH = /A
where ¢; ~ N (0,1).
@ We also need a term structure of volatilities
oja(s) = StDev(dF(s,s + jA,s+ (j + 1)A))

that can be obtained via the bootstrapping of the term structure of cap
volatilities. Notice that we also need to specify the time evolution (with
respect to time s) of this term structure. Different assumptions are described
in Brigo and Mercurio.
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Monte Carlo simulation of forward rates Ill

© We also discretize the sde of log(F;(t)), so we are sure that forward rates
remain positive.

N oi®)or &)k kq1  o2(s)

oo 1 ) = Fgge " AR~ ot

)

for s = 0,4, , NA. O‘%Wd-b(g')» b.(0) ¥+

Table: Simulation scheme of the term structure of forward rates with tenor A. The
terminal measure is the 5A forward measure. Simulation ends at time 4A

Start 0 A 2A 3A 4N
End A 2A 3A 4n 5A
Tenor A A A A
Time Step dw Vol. TS N TN o3A TYN
0 F(0,0,A) F(0, A, 28) F(0, 24, 34) F(0,34, 4A) F(0, 4A, 5A)
A e VA F(A, A, 24) F(A, 24, 37) F(A, 34, 4A) F(A, 4A, 5A)
24 ep VA F(24, 24, 34) F(24, 34, 41) F(24, 44, 51)
3A e3VA F(34,3A, 41) F(3A, 4A, 51)
4A eq VB

F(44, 40, 50)
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Monte Carlo simulation
A Numerical Example
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Example (MC Simulation of the Forward LIBOR market model)

@ Assume the initial forward curve with 6m tenor is flat at 2%. The time step
is semi-annual. Assume the volatility term structure is flat at 20%.

@ [Step 1] The simulated increment of the Brownian motion over the first time
step is -0.1356.

@ We obtain that £(0.5,0.5,1) =

0.2X0.2X0.02X0.5 | 0.2X0.2X0.02X0.5 ;| 0.2X0.2X0.02X0.5 022
2%e(_( o005 ST atoom0 s T arooases )~ )XO 5+0.2x(—0.1356) __ 1.926%
@ We obtain that F(0.5,1,1.5) =
0.2x0.2x0.02X0.5 | 0.2x02x0.02x0.5) 022
2%6(_ Tro0ax05 T i002%05 )XO 5+0.2x(—0.1356) — 1.9264%

@ We obtain that F(0.5,1.5,2) =

0.2Xx0.2%x0.02%x0.5 02
2%e< (2240250.02x08)_ 022 x0.5+0.2 (—0.1356)

= 1.9267%

@ We obtain that F(0.5,2,2.5) =
2%ef—><0 .5+0.2%x(—0.1356) __ —1. 9271%




Example ((..ctd))

@ The term structure of discount factors at time s is given by

1

P(s,s—l—jA):P(5’5+U_1)A)1+F(S s+(—1A SJFJ.A)A7

starting with P(s,s + A) = 1/(1 + F(s,s,s + A)A).
@ At the initial time, we have

P(0,A) = 99.0099%; P(0,2A) = 98.0296%;

P(0,3A) = 97.0590%; P(0,4A) = 96.0980%; P(0,5A) = 95.1466%.

@ After 6m the term structure of discount factors is given by

P(05, 1) = m = 990462%,

P(0.5,1.5) = 232402% — — 98.101%,

P(0.5,2) = 71+1?§é}5%j/;0_5 = 97.165%,

_ 97.165% _
P(0.5,2.5) = ;L185%  — 96.238%,

©Gianluca Fusai (Cass ) The FLMM SMM269

17/25



Example ((..ctd))

@ [Step 2] The simulated increment of the Brownian motion over the second
time step is -0.1899.

@ We obtain that F(1,1,1.5) =

0.2x0.2x0.019267x0.5 | 0.2x0.2x0.019271X0. o2
1.9264%6<_ >§+0.(>)<192617><07..z.< 2+ >i+0.5<19271x701.;< 5)_022 >X0'5+0-2X(_0'1899) = 1835%
@ In addition,
0.2x0.2X0.010271x0.5 _ 0.22
— =5 otorios —— 5 ) X0.54+0.2x(—0.1899
F(]., 1.5,2) — 19267%6( 1+0.019271X 0.5 2 ) ( ) = 1836%

and
2
F(1,2,2.5) = 1.9271%e ™ "% x0-5+02x(-0.18%9) _ 1 83719}

@ The simulated discount curve in 1 year time is

1 —
1,15) = rermstorcs = 99:091%
— . (] — o
P(1,2) = 1153905 = 98-189%,

_ 98.189%  _
P(1,2.5) = 785719505 = 97-296%.




Example ((..ctd))

o [Step 3] The simulated increment of the Brownian motion over the third
time step is 0.0984.

@ \We obtain that F(1.5,1.5,2) =

0.2x0.2x0.018371x0.5 _%) %0.540.2x (0.0084)

1836%6(_ 1+0.018371x 0.5 = 1.854%

@ In addition,

2
F(1.5,1.5,2.5) = 1.8371%e ™ "2 *x0-5+0-2x(0.0984) _ 1 g55o0,
@ The simulated discount curve in 1.5 year is

-1
P(1.5,2) = 155303 171.855%x0.5

@ [Step 4] The simulated increment of the Brownian motion over the fourth
time step is -0.5587 and

22
F(2,2,2.5) = 1.855%e (%) x05+02x(=05%7) _ 4 6450,

and the discount factor is P(2,2.5) = 1/(1 + 1.642% x 0.5) = 99.186%.

=09.082%, P(1.5,2.5) = —22082% _ _ 981719

0,




Table: Simulated forward and discount curve

Forward Rates

Start

0.00 0.50 1.00 1.50 2.00
End 0.50 1.00 1.50 2.00 2.50
Tenor Tenor 0.5 0.5 0.5 0.5
Time ‘ BM Vol. TS 20.00% 20.00% 20.00% 20.00%
0.00 2.00% 2.00% 2.00% 2.00% 2.00%
0.50 -0.13560 1.9260% 1.9264% 1.9267% 1.9271%
1.00 -0.18990 1.8354% 1.8361% 1.8368%
1.50 0.09840 1.8536% 1.8547%
2.00 -0.55870 1.6421%

| Time | Discount Factors

0.00 100% 99.0099%  98.0296%  97.0590%  96.0980%  95.1466%
0.50 100% 99.0462%  98.1013%  97.1652%  96.2379%
1.00 100% 99.0907%  98.1892%  97.2956%
1.50 100% 99.0817%  98.1713%
2.00 100% 99.1856%
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Example (Pricing a CAP)

@ We price a cap with 2 years tenor and strike 1.5% with 6m LIBOR as
reference rate. It contains the following caplets 6mx12m, 12mx18m,
18mx24m.

@ Reset dates are: 6m, 12m and 18m; Payment dates are 12m, 18m and 24m.

@ We use the 2.5-forward measure, i.e. the numeraire is the zcb expiring in 2.5
years.

@ Given the simulated forward rates we obtain the simulated 6m LIBOR rates
and one simulated relative payoff of the cap that is 0.5738%.

Pricing a CAP with MC Simulation

Reset Payment 6mLIBOR Strike Payoff Numeraire  Payoff/Numeraire
0.5 1 1.9260%  1.5000% 0.2130%  97.2956% 0.2189%
1 1.5 1.8354%  1.5000% 0.1677%  98.1713% 0.1708%
1.5 2 1.8536%  1.5000% 0.1768%  99.1856% 0.1783%
Sum 0.5680%
J
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Example ((...ctd))

We repeat the simulation 100,000 times and we obtain the MC estimate of the

cap as

cap = 95.1466% x Average Payoff

where Average Payoff is given by

100,000

caplet;(12mx18m)

caplet;(18mx24m)

caplet;(6mx12m)
100000 Z ( P(1,25)

Simulation

1
2
3

7
8
9
100,000
Avg Payoff

Numeraire
CAP Price

P;(1.5,2.5)

MC

0.7466%
0.0562%
0.3769%
0.6670%
0.5542%
0.1441%
0.9784%
0.3718%
0.8726%
0.3580%

0.5126%
95.1466%
0.4877%

P;(2,2.5)

)
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Example (Pricing a swaption)

@ We price a swaption expiring in 12 m and strike 1.5%.

@ It is written on swap having 12m tenor with semi-annual payments.

@ We price it by MC simulation computing using the zcb expiring in 2.5 years
as numeraire

M .
1 (Si(12m) — 1.5%)* x Annuity;(12m)
P(0,2.5) x o E

- P;(12m, 30m)

where i refers to the simulation.

@ Using the simulated values we have

Pricing a SWAPTION with MC Simulation
Expiry  Annuity  Floating Leg FSR Strike Payoff Numeraire  Payoff/Numeraire
1 0.97742 1.80% 1.84%  1.50% 0.003289  97.2956% 0.003380

. Annuity = 0.5 x (98.1892% + 97.2956%) = 97.742%;
. FloatinglLeg = 99.0907% — 97.2956% = 1.80%;

A
B

_ _1.80% __ o/.
C. ForwardSwapRate = g7455; = 1.84%;
D
E

. Payoff = (1.84% — 1.5%)" x 97.742% = 0.003289;

Payoff  __ 0.003289 __
" Numeraire — 97.2956% 0.003380.
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Example ((...ctd))

We repeat the simulation 100,000 times and we obtain the MC estimate of the

swaption as
cap = 95.1466% x Average Payoff

where Average Payoff is given by

i”: ((12m) — 1.5%)* x Annuity;(12m)
M P;(12m, 30m)

‘ NR. Simulation Payoff/Numeraire ‘

1 0.2904%

2 0.1266%

3 0.4975%
ce 0.9891%
0.8667%

e 0.2880%

7 0.3671%

8 0.6620%

9 0.2754%
100,000 0.9590%
Avg 0.5322%
Numeraire 95.1466%
Price 0.5063%
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Conclusions

@ We have presented the Forward LIBOR market model.
@ We have illustrated how to implement a Monte Carlo simulation.
@ The required inputs are

A. the initial term structure of simple forward rates with a given tenor; It is
obtainted by boostrapping market quotations of LIBOR and swap rates

B. the initial term structure of volatilities (fwd volatilities) of simple forward
rates with a given tenor; It is obtainted by boostrapping market quotations of
cap volatilities. We need to specify the time evolution of this term structure.
See Brigo and Mercurio for different specifications.

C. In order to have a multifactor model, we also need the correlations among
forward rates. These can be estimated using historical time series or implied
by quotations of the implied volatilities of swaptions.

@ The presented MC simulation can be used also for pricing more complex
interest rate derivatives.
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